高阶奇异值分解(High Order Singular Value  Decomposition,   HOSVD)

奇异值分解SVD(Singular
Value Decomposition)是线性代数中一种重要的矩阵分解

奇异值|A|=0
奇异值分解法是线性代数矩阵论中一种重要的矩阵分解法,在信号处理、统计学等领域有重要应用。
定义:设A为复数域内m*n阶矩阵,
A*表示A的共轭转置矩阵,A*A的n个非负特征值的算术平方根叫作矩阵A的奇异值。记为σi(A)。
如果把A*A的特征值记为λi(A*A),则σi(A)=sqrt(λi(A*A))。
同时,需要注意的是,任意矩阵都有奇异值。对于一般的方阵来说,其奇异值与特征值是没有关系的。
直观的解释[2]
在矩阵M的奇异值分解中 M = UΣV*
·U的列(columns)组成一套对M的正交"输入"或"分析"的基向量。这些向量是MM*的特征向量。
·V的列(columns)组成一套对M的正交"输出"的基向量。这些向量是M*M的特征向量。
·Σ对角线上的元素是奇异值,可视为是在输入与输出间进行的标量的"膨胀控制"。这些是M*M及MM*的奇异值,并与U和V的行向量相对应。

SVD分解

SVD分解是LSA的数学基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章。本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似。本节讨论的矩阵都是实数矩阵。

基础知识

1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数

2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵

3. 单位矩阵:如果对角矩阵中所有对角线上的元素都为1,该矩阵称为单位矩阵

4. 特征值:对一个M x M矩阵C和向量X,如果存在λ使得下式成立

则称λ为矩阵C的特征值,X称为矩阵的特征向量。非零特征值的个数小于等于矩阵的秩。

5. 特征值和矩阵的关系:考虑以下矩阵

该矩阵特征值λ1 = 30,λ2 = 20,λ3 = 1。对应的特征向量

假设VT=(2,4,6) 计算S x VT

有上面计算结果可以看出,矩阵与向量相乘的结果与特征值,特征向量有关。观察三个特征值λ1 = 30,λ2 = 20,λ3 = 1,λ3值最小,对计算结果的影响也最小,如果忽略λ3,那么运算结果就相当于从(60,80,6)转变为(60,80,0),这两个向量十分相近。这也表示了数值小的特征值对矩阵-向量相乘的结果贡献小,影响小。这也是后面谈到的低阶近似的数学基础。

矩阵分解

1. 方阵的分解

1) 设S是M x M方阵,则存在以下矩阵分解

其中U 的列为S的特征向量,为对角矩阵,其中对角线上的值为S的特征值,按从大到小排列:

2) 设S是M x M 方阵,并且是对称矩阵,有M个特征向量。则存在以下分解

其中Q的列为矩阵S的单位正交特征向量,仍表示对角矩阵,其中对角线上的值为S的特征值,按从大到小排列。最后,QT=Q-1,因为正交矩阵的逆等于其转置。

2. 奇异值分解

上面讨论了方阵的分解,但是在LSA中,我们是要对Term-Document矩阵进行分解,很显然这个矩阵不是方阵。这时需要奇异值分解对Term-Document进行分解。奇异值分解的推理使用到了上面所讲的方阵的分解。

假设C是M x N矩阵,U是M x M矩阵,其中U的列为CCT的正交特征向量,V为N x N矩阵,其中V的列为CTC的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:

其中CCT和CTC的特征值相同,为

Σ为M X N,其中,其余位置数值为0,的值按大小降序排列。以下是Σ的完整数学定义:

σi称为矩阵C的奇异值。

用C乘以其转置矩阵CT得:

上式正是在上节中讨论过的对称矩阵的分解。

奇异值分解的图形表示:

从图中可以看到Σ虽然为M x N矩阵,但从第N+1行到M行全为零,因此可以表示成N x N矩阵,又由于右式为矩阵相乘,因此U可以表示为M x N矩阵,VT可以表示为N x N矩阵

3. 低阶近似

LSA潜在语义分析中,低阶近似是为了使用低维的矩阵来表示一个高维的矩阵,并使两者之差尽可能的小。本节主要讨论低阶近似和F-范数。

给定一个M x N矩阵C(其秩为r)和正整数k,我们希望找到一个M x N矩阵Ck,其秩不大于K。设X为C与Ck之间的差,X=C – Ck,X的F-范数为

当k远小于r时,称Ck为C的低阶近似,其中X也就是两矩阵之差的F范数要尽可能的小。

SVD可以被用与求低阶近似问题,步骤如下:

1. 给定一个矩阵C,对其奇异值分解:

2. 构造,它是将的第k+1行至M行设为零,也就是把的最小的r-k个(the
r-k smallest)奇异值设为零。

3. 计算Ck

回忆在基础知识一节里曾经讲过,特征值数值的大小对矩阵-向量相乘影响的大小成正比,而奇异值和特征值也是正比关系,因此这里选取数值最小的r-k个特征值设为零合乎情理,即我们所希望的C-Ck尽可能的小。完整的证明可以在Introduction to Information Retrieval[2]中找到。

我们现在也清楚了LSA的基本思路:LSA希望通过降低传统向量空间的维度来去除空间中的“噪音”,而降维可以通过SVD实现,因此首先对Term-Document矩阵进行SVD分解,然后降维并构造语义空间。

HOSVD高阶奇异值分解的更多相关文章

  1. c#语言-高阶函数

    介绍 如果说函数是程序中的基本模块,代码段,那高阶函数就是函数的高阶(级)版本,其基本定义如下: 函数自身接受一个或多个函数作为输入. 函数自身能输出一个函数,即函数生产函数. 满足其中一个条件就可以 ...

  2. swift 的高阶函数的使用代码

    //: Playground - noun: a place where people can play import UIKit var str = "Hello, playground& ...

  3. JavaScript高阶函数

    所谓高阶函数(higher-order function) 就是操作函数的函数,它接收一个或多个函数作为参数,并返回一个新函数. 下面的例子接收两个函数f()和g(),并返回一个新的函数用以计算f(g ...

  4. 分享录制的正则表达式入门、高阶以及使用 .NET 实现网络爬虫视频教程

    我发布的「正则表达式入门以及高阶教程」,欢迎学习. 课程简介 正则表达式是软件开发必须掌握的一门语言,掌握后才能很好地理解到它的威力: 课程采用概念和实验操作 4/6 分隔,帮助大家理解概念后再使用大 ...

  5. python--函数式编程 (高阶函数(map , reduce ,filter,sorted),匿名函数(lambda))

    1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层的函数,可以把复杂的任务分解成简单的任务,这种一步一步的分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. ...

  6. python学习道路(day4note)(函数,形参实参位置参数匿名参数,匿名函数,高阶函数,镶嵌函数)

    1.函数 2种编程方法 关键词面向对象:华山派 --->> 类----->class面向过程:少林派 -->> 过程--->def 函数式编程:逍遥派 --> ...

  7. Scala的函数,高阶函数,隐式转换

    1.介绍 2.函数值复制给变量 3.案例 在前面的博客中,可以看到这个案例,关于函数的讲解的位置,缺省. 4.简单的匿名函数 5.将函数做为参数传递给另一个函数 6.函数作为输出值 7.类型推断 8. ...

  8. Python之路 day3 高阶函数

    #!/usr/bin/env python # -*- coding:utf-8 -*- #Author:ersa """ 变量可以指向函数,函数的参数能接收变量, 那么 ...

  9. JavaScript高阶函数 map reduce filter sort

    本文是笔者在看廖雪峰老师JavaScript教程时的个人总结 高阶函数            一个函数就接收另一个函数作为参数,这种函数就称之为高阶函数          1.高阶函数之map:   ...

随机推荐

  1. 条款10:令operator=返回一个reference to * this(Have assignment operators return a reference to *this)

    NOTE: 1.令赋值(assignment)操作符返回一个reference to *this. 2.此协议适用于所有赋值相关的运算比如:+= -= *=....

  2. perl学习之:use & require

    相同: 都可以用来引用module(.PM). 不同: 1) 区别在于USE是在当前默认的@INC里面去寻找,一旦模块不在@INC中的话,用USE是不可以引入的,但是require可以指定路径: 2) ...

  3. php 后端规范

    后端框架地址: git@gitee.com:xielisen/xcore.git 框架使用规范,内部沟通 Controller命名规范 1, 首字母大写,其余小写 2, 对应数据库名称. 不要下划线 ...

  4. 我的java web之路(配置开发环境)

    这个学期学习java web开发,当然不能只靠上机的时间来练习,于是,便在自己的电脑上安装一系列的软件... 1.JDK的安装.首先,下载Java JDK,可以到sun公司网站下载.一定要下载适合自己 ...

  5. Java多线程入门Ⅱ

    线程的让步 线程让出自己占用的CPU资源 线程让出资源,不指定让给谁 线程让出资源,指定让给谁 方法1: public static void yield(); 线程实现交替打印 import jav ...

  6. Python数据结构--搜索树

    ''' 二叉搜索树(BST)是一棵树,其所有节点都遵循下述属性 - 节点的左子树的键小于或等于其父节点的键. 节点的右子树的键大于其父节点的键. 因此,BST将其所有子树分成两部分; 左边的子树和右边 ...

  7. HDU1166-敌兵布阵,线段数模板题~~

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  8. hust 1017 dancing links 精确覆盖模板题

    最基础的dancing links的精确覆盖题目 #include <iostream> #include <cstring> #include <cstdio> ...

  9. [luoguP1783] 海滩防御(二分 || 最短路 || 最小生成树)

    传送门 因为答案满足单调性,所以看到这个题,第一反应是二分,但是总是WA,也没有超时. 看了题解,,,,,, 这题刚开始很多人会想到二分,二分答案,然后看看是否能绕过所有信号塔,但是,这样写明显超时, ...

  10. [luoguP3068] [USACO13JAN]派对邀请函Party Invitations(stl大乱交)

    传送门 记录每一个编号在那些组中,可以用vector,这里选择链式前向星. 每一组用set 将被邀请的放到queue中 #include <set> #include <queue& ...