【bzoj4519】[Cqoi2016]不同的最小割 分治+最小割
题目描述
输入
输出
输出文件第一行为一个整数,表示个数。
样例输入
4 4
1 2 3
1 3 6
2 4 5
3 4 4
样例输出
3
题解
分治+最小割,同 bzoj2229 。
最后统计答案时把两点最小割取出来,去个重,求一下个数即可。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define N 860
#define M 17010
using namespace std;
queue<int> q;
int n , head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N] , a[N] , tmp[N] , ans[N][N] , v[1000000] , tot;
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = z , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
void solve(int l , int r)
{
if(l >= r) return;
int i , j , sum = 0 , p1 , p2;
for(i = 2 ; i <= cnt ; i += 2) val[i] = val[i ^ 1] = (val[i] + val[i ^ 1]) >> 1;
s = a[l] , t = a[r];
while(bfs()) sum += dinic(s , 1 << 30);
for(i = 1 ; i <= n ; i ++ )
if(dis[i])
for(j = 1 ; j <= n ; j ++ )
if(!dis[j])
ans[i][j] = ans[j][i] = min(ans[i][j] , sum);
for(p1 = i = l , p2 = r ; i <= r ; i ++ )
{
if(dis[a[i]]) tmp[p1 ++ ] = a[i];
else tmp[p2 -- ] = a[i];
}
for(i = l ; i <= r ; i ++ ) a[i] = tmp[i];
solve(l , p2) , solve(p1 , r);
}
int main()
{
int m , i , j , x , y , z , ret = 0;
scanf("%d%d" , &n , &m);
while(m -- ) scanf("%d%d%d" , &x , &y , &z) , add(x , y , z);
for(i = 1 ; i <= n ; i ++ ) a[i] = i;
memset(ans , 0x7f , sizeof(ans)) , solve(1 , n);
for(i = 1 ; i <= n ; i ++ )
for(j = i + 1 ; j <= n ; j ++ )
v[++tot] = ans[i][j];
sort(v + 1 , v + tot + 1);
v[0] = -1 << 30;
for(i = 1 ; i <= tot ; i ++ )
if(v[i] != v[i - 1])
ret ++ ;
printf("%d\n" , ret);
return 0;
}
【bzoj4519】[Cqoi2016]不同的最小割 分治+最小割的更多相关文章
- 最小割分治(最小割树):BZOJ2229 && BZOJ4519
定理:n个点的无向图的最小割最多n-1个. 可能从某种形式上形成了一棵树,不是很清楚. 最小割分治:先任选两个点求一边最小割,然后将两边分别递归,就能找到所有的最小割. 这两个题是一样的,直接搬din ...
- bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)
2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...
- BZOJ 2229 / Luogu P3329 [ZJOI2011]最小割 (分治最小割板题)
题面 求所有点对的最小割中<=c的数量 分析 分治最小割板题 首先,注意这样一个事实:如果(X,Y)是某个s1-t1最小割,(Z,W)是某个s2-t2最小割,那么X∩Z.X∩W.Y∩Z.Y∩W这 ...
- 【BZOJ-4519】不同的最小割 最小割树(分治+最小割)
4519: [Cqoi2016]不同的最小割 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 393 Solved: 239[Submit][Stat ...
- [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割
题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...
- [bzoj4519][Cqoi2016]不同的最小割_网络流_最小割_最小割树
不同的最小割 bzoj-4519 Cqoi-2016 题目大意:题目链接. 注释:略. 想法: 我们发现这和最小割那题比较像. 我们依然通过那个题说的办法一样,构建最小割树即可. 接下来就是随便怎么处 ...
- BZOJ4519——[cqoi2016]不同的最小割
0.题意:求两点之间的最小割的不同的总量 1.分析:裸的分治+最小割,也叫最小割树或GH树,最后用set搞一下就好 #include <set> #include <queue> ...
- BZOJ4519: [Cqoi2016]不同的最小割
Description 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割.对于带权图来说,将 ...
- ZJOI 最小割 CQOI 不同的最小割 (最小割分治)
题目1 ZJOI 最小割 题目大意: 求一个无向带权图两点间的最小割,询问小于等于c的点对有多少. 算法讨论: 最小割 分治 代码: #include <cstdlib> #include ...
随机推荐
- Java 堆内存和栈内存
看了一些别人总结的博客,感觉对堆内存和栈内存有了一个初步的认识.所以来写写自己对堆内存和栈内存的理解. Java把内存分成两种,一种叫做栈内存,一种叫做堆内存. 在函数中定义的一些基本类型的变量和对象 ...
- IIS 服务器支持下载apk 文件
前不久,在本地IIS文件下部署一个网站,可以下载apk文件,就是测试apk应用升级,发现访问不能下载,原因是IIS没有配置对这种apk文件的处理程序. 解决方案如下所示: 1.打开IIS, 找到MIM ...
- IOS typedef 函数指针的用法
代码简化, 促进跨平台开发的目的. typedef 行为有点像 #define 宏,用其实际类型替代同义字. 不同点:typedef 在编译时被解释,因此让编译器来应付超越预处理器能力的文本替换. 用 ...
- jenkins+phantomjs环境搭建及使用
#jenkins+phantomjs 前端性能自动化测试的安装和使用#gcc GNU编译器套件 https://gcc.gnu.org/ #nginx 高性能的HTTP和反向代理服务器 http:// ...
- powershell 版本问题
Login-AzureRmAccount : 无法将“Login-AzureRmAccount”项识别为 cmdlet.函数.脚本文件或可运行程序的名称.请检查名称的拼写,如果包括路径,请确保路径正确 ...
- 如何启动Intel VT-x
如何启动Intel VT-x 5 在64bit win7系统下安装了Vmware10,然后安装64位的UbuntuKylin 14.04,想要打开UbuntuKylin,弹出如下对话框: 请问该如何启 ...
- UVA 12549 Sentry Robots (最小点覆盖)
这道题挺像hdu 5093 Battle ships的,不过那道题是要求最多放置的点数,而这道题是要求最小点覆盖. 顶点覆盖的定义是:在G中任意边至少有一个端点属于顶点集合S. 一个重要的位置有(x, ...
- 关于 QObject 类
1.QObject类 简述 QObject类是所有Qt对象的基类. QObject是Qt对象模型的核心. 该模型的核心特征是称为信号和槽的对象通信机制. 您可以使用connect()将信号连接到槽 ...
- python基础一 day10(2)
复习: # 三元运算符# 接收结果的变量 = 条件为真的结果 if 条件 else 条件为假的结果# 接收结果的变量 = “真结果” if 条件 else “假结果”## 命名空间 和 作用域# 三种 ...
- CPP-网络/通信:SOCKET
客户端实现代码: //引入头文件 #include <WinSock2.h> //客户端创建Socket////////////////////////////////////////// ...