Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6 8
 
 
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<iostream> using namespace std;
#define N 1000010
#define INF 0xfffffff
int dp[N];
int M[N];
int Max;
int a[N]; int main()
{
int m,n;
while(scanf("%d %d",&m,&n)!=EOF)
{
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
dp[i]=;
M[i]=;
}
dp[]=;
M[]=;
for(int i=;i<=m;i++)
{
Max=-INF;
for(int j=i;j<=n;j++)
{
dp[j]=max(dp[j-]+a[j],M[j-]+a[j]);
M[j-]=Max;
Max=max(Max,dp[j]);
}
}
printf("%d\n",Max);
}
return ;
}

Max Sum Plus Plus-HDU1024(dp)的更多相关文章

  1. 【题解】最大 M 子段和 Max Sum Plus Plus [Hdu1024] [51nod1052]

    [题解]最大 M 子段和 Max Sum Plus Plus [Hdu1024] [51nod1052] 传送门:最大 \(M\) 子段和 \(Max\) \(Sum\) \(Plus\) \(Plu ...

  2. HDU1024 Max Sum Plus Plus 【DP】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. hdu1024 Max Sum Plus Plus 滚动dp

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. HDU 1024:Max Sum Plus Plus(DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Problem Description Now I think you ...

  5. HDU 1024 Max Sum Plus Plus【DP】

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  6. HDU 1024 Max Sum Plus Plus(DP的简单优化)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  7. Max Sum—hdu1003(简单DP) 标签: dp 2016-05-05 20:51 92人阅读 评论(0)

    Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  8. HDU 1024:Max Sum Plus Plus(DP,最大m子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU1024 Max Sum Plus Plus(dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 #include<iostream> #include<vector> #i ...

  10. HDU 1024 Max Sum Plus Plus 简单DP

    这题的意思就是取m个连续的区间,使它们的和最大,下面就是建立状态转移方程 dp[i][j]表示已经有 i 个区间,最后一个区间的末尾是a[j] 那么dp[i][j]=max(dp[i][j-1]+a[ ...

随机推荐

  1. RFS自动化测试(一)

    RFS 即 Robot Framework + Selenium RFS 的安装 1. python https://www.python.org/ RF框架是基于python的,所以要先安装有pyt ...

  2. 图解GitHub

    转自:http://marklodato.github.io/visual-git-guide/index-zh-cn.html 个人觉得这一篇比一些入门教程更值得看,图解很详细到位,很容易理解其工作 ...

  3. jQuery ajax参数后台获取不到的问题

    <script type="text/javascript"> init(); var alldate = {a : "0",b:"1&q ...

  4. PHP一句话后门过狗姿势万千之传输层加工

    既然木马已就绪,那么想要利用木马,必然有一个数据传输的过程,数据提交是必须的,数据返回一般也会有的,除非执行特殊命令. 当我们用普通菜刀连接后门时,数据时如何提交的,狗狗又是如何识别的,下面结合一个实 ...

  5. leetcode_935. Knight Dialer_动态规划_矩阵快速幂

    https://leetcode.com/problems/knight-dialer/ 在如下图的拨号键盘上,初始在键盘中任意位置,按照国际象棋中骑士(中国象棋中马)的走法走N-1步,能拨出多少种不 ...

  6. C++ isalpha、isalnum、islower、isupper用法

    1. isalpha isalpha()用来判断一个字符是否为字母,如果是字符则返回非零,否则返回零. cout<<isalpha('a'); //返回非零 cout<<isa ...

  7. Linux 常用命令:解压缩

    目录 Linux 常用命令:解压缩 说明 tar 涉及参数说明: 压缩 解压 zip压缩 涉及参数说明: uzip解压 涉及参数说明: gzip 涉及参数说明: 压缩率比较 Linux 常用命令:解压 ...

  8. Can't connect to MySQL server on '127.0.0.1' (10061)

    一条命令解决 mysqld --initialize-insecure --user=mysql 但这只是简单解决问题,详细查看百度经验,知乎上的讨论 forget root password ref ...

  9. spring中bean的配置详解--定义parent

    在工作中碰到了好多的配置文件,具体来说是spring 中bean配置的parent的配置,搞的我一头雾水,仔细看一下spring中有关bean的配置,剖析一下,具体什么含义! 一.Spring IoC ...

  10. HDU-4791-Alice‘s Print Service

    分析: 1.由于价格是递减的,所以可能出现si*pi>sj*pj(j>i).所以要有一个数组来储存当前端点的最小值. 2.然后二分查找当前的si,比较q*p[i]和M[i+1].不过在这之 ...