Comet OJ - Contest #2 (D 错综的光影所迷惑的思念是) 容斥计数
题意:给定一颗 $n$ 个节点的树,定义 $dis(x,y)$ 为树上点 $x$ 到 $y$ 的路径经过的边数.
定义一个点集 $S$ 的 $f(S)$ 为 $f(S)=max\left \{dis(x,y)|x,y\in S\right \}$ $,|S|\geqslant2$
求:对于 $i$ ,有少个点集 $S$ 满足 $|S|\geqslant 2$ 且 $f(S)=i$
题解:
上面那个 $f(S)$ 就是这个点集的直径.
考虑枚举直径,我们知道树上的直径有奇数条边/偶数条边两种情况,这里先讲一下直径为偶数条边的情况,奇数条边同理.
假设当前直径为 $i$,那么我们可以枚举直径的中心点 $p$,也可以看作是我们要枚举的点集的中心点.
我们先让 $p$ 为这颗树的树根.
假设当前枚举的半径的半径为 $j$,那么显然 $p$ 的子树中深度为 $(j-1)$ 的点都是可以随便选的(可选可不选).
令这部分方案数为 $re$,则 $re=2^{dep[j-1]}$ 其中 $dep[i]$ 表示当前根的子树中所有深度小于等于 $i$ 的节点数量.
枚举完可以随便选的部分,再枚举一下深度恰好为 $j$ 的部分:令 $sum[j]$ 表示所有儿子中深度恰好为 $j$ 的数量.
那么我们只需保证在这么多点中选大于等于 $2$ 个点即可.
这个的方案数为 $2^{sum[j]}-1$,然后减掉只有一个的情况,就是 $\sum_{v\in son[p]} 2^{cnt[v][j]}-1$
因为直径可能是奇数,所以将每条边拆成一个点连两条边即可.
#include <bits/stdc++.h>
#define N 4010
#define ll long long
#define mod 998244353
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int edges,now,n;
int hd[N<<1],to[N<<2],nex[N<<2],cnt[N<<1][N],sum[N],bin[N],ans[N];
void add(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void dfs(int u,int ff,int d)
{
if(u<=n) ++sum[d], ++cnt[now][d];
for(int i=hd[u];i;i=nex[i]) if(to[i]!=ff) dfs(to[i], u, d+1);
}
int main()
{
// setIO("input");
int i,j;
scanf("%d",&n);
bin[0]=1;
for(i=1;i<=n;++i) bin[i]=bin[i-1]*2%mod;
for(i=1;i<n;++i)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,i+n),add(i+n,u);
add(i+n,v),add(v,i+n);
}
for(i=1;i<=2*n;++i)
{
now=0;
for(j=hd[i];j;j=nex[j]) ++now, dfs(to[j],i,1);
int re=(i<=n);
for(j=1;j<n;++j)
{
int mdl=bin[sum[j]]-1;
for(int k=1;k<=now;++k)
{
(mdl+=mod-bin[cnt[k][j]]+1)%=mod;
}
(ans[j]+=(ll)mdl*bin[re]%mod)%=mod;
re+=sum[j];
}
memset(sum,0,sizeof sum);
for(j=1;j<=now;++j) memset(cnt[j], 0, sizeof cnt[j]);
}
for(i=1;i<n;++i)
printf("%d\n",(ans[i]+mod)%mod);
return 0;
}
Comet OJ - Contest #2 (D 错综的光影所迷惑的思念是) 容斥计数的更多相关文章
- Comet OJ - Contest #2简要题解
Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...
- Comet OJ - Contest #2题解
传送门 既然没参加过就没有什么小裙子不小裙子的了-- 顺便全是概率期望真是劲啊-- 因自过去而至的残响起舞 \(k\)增长非常快,大力模拟一下就行了 int main(){ scanf("% ...
- Comet OJ - Contest #2 简要题解
Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...
- Comet OJ - Contest #4--前缀和
原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...
- Comet OJ - Contest #11 题解&赛后总结
Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...
- Comet OJ - Contest #8
Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...
- Comet OJ - Contest #13-C2
Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...
- Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」
来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...
- Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)
来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...
随机推荐
- Oracle查询部门工资最高员工的两种方法 1、MAX()函数 2、RANK()函数
本文以SCOTT用户下初始的EMP表为参考.代码可直接使用. 查询EMP表结构的语句如下,[代码1]: DESC EMP; EMP表结构如下:[结果1]: SQL> DESC EMP ...
- MySQL使用中遇到的error
eclipse连接不上数据库 //加载驱动 //oracal.jdbc.drive.Oracle.Driver //com.mysql.jdbc.Driver try { Class.forName( ...
- go 常量定义和使用
常量的定义与变量类似,只不过使用 const 关键字. 常量可以是字符.字符串.布尔或数字类型的值. 常量不能使用 := 语法定义. 常量必须定义时赋值,不能多次赋值 package main imp ...
- SAS学习笔记44 宏函数
类SAS函数的宏函数 该部分函数共5个,其无论是名字.语法.功能都与SAS函数类似,只是在函数名前多了一个“%”.这5个宏函数分别是: %INDEX %LENGTH %SCAN %SUBSTR %UP ...
- 2019杭电多校一 K. Function (数论)
大意: 给定$n(n\le 10^{21})$, 求$\sum\limits_{i=1}^n gcd(\lfloor\sqrt[3]{i}\rfloor,i)\mod 998244353$ 首先立方根 ...
- JS基础_this补充
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- springboot启动流程(五)创建ApplicationContext
所有文章 https://www.cnblogs.com/lay2017/p/11478237.html 正文 springboot在启动过程中将会根据当前应用的类型创建对应的ApplicationC ...
- 关于Vue中页面(父组件)下拉,页面中的子组件加载更多数据的实现方法
一个项目中存在很多这种情况:父组件(页面)中的子组件需要做下拉加载更多的需求,但是这个下拉到底部的动作只能通过监控页面(父组件)来完成 这就需要父子组件之间的通信,代码如下: 1. 建立一个用于父子组 ...
- zlog日志函数库
在C的世界里面没有特别好的日志函数库(就像JAVA里面的的log4j,或者C++的log4cxx).C程序员都喜欢用自己的轮子.printf就是个挺好的轮子,但没办法通过配置改变日志的格式或者输出文件 ...
- OpenCV实现图象翻转、滤波、锐化
OpenCV实现图象翻转.滤波.锐化 注:以下代码,使用opencv库函数实现了对图片的翻转.灰度图转换.各种滤波.各种锐化. 库函数相关参数及说明参阅:OpenCV中文站=>opencv教程( ...