论文地址:http://arxiv.org/abs/1811.11168

作者:pprp

时间:2019年5月11日

0. 摘要

DCNv1引入了可变形卷积,能更好的适应目标的几何变换。但是v1可视化结果显示其感受野对应位置超出了目标范围,导致特征不受图像内容影响(理想情况是所有的对应位置分布在目标范围以内)。

为了解决该问题:提出v2, 主要有

  1. 扩展可变形卷积,增强建模能力
  2. 提出了特征模拟方案指导网络培训:feature mimicking scheme

结果:性能显著提升,目标检测和分割效果领先。

1. 简介

Geometric variations due to scale, pose, viewpoint and part deformation present a major challenge in object recognition and detection.

目标检测一个主要挑战:尺度姿势视角部件变形引起的几何变化

v1 引入两个模块:

  • Deformable Convolution : 可变形卷积

    • 通过相对普通卷积基础上添加的偏移解决
  • Deformable RoI pooling : 可变形 RoI pooling
    • 在RoI pooling 中的bin学习偏移

为了理解可变形卷积,进行了可视化操作:

  • samples for an activation unit tend to cluster around the object on which it lies.

  • 激活单元样本点聚集在目标附近

  • 但是覆盖范围不够精确,超出the area of interest

由此提出DCNv2, 具有增强建模的能力,可用于学习可变形卷积

with enhanced modeling power for learning deformable convolutions.

添加了两种互补的模式:

  • 更广泛应用可变形卷积,在更多层上使用可变形卷积
  • 在原有基础上不仅加上偏移(offset),而且加上幅值(amplitude)的控制

为了充分利用可变形卷积提取的信息,吸取知识蒸馏的手段,进行培训。

  • 教师网络:R-CNN, 针对裁剪内容进行分类的一个网络,防止学习不在目标范围以外的内容
  • 学生网络:Faster R-CNN

2. 可变形卷积行为分析

2.1 空间支持可视化

可视化三个内容:

  1. 有效感受野 : 可视化感受野
  2. 有效采样位置: 对采样点求梯度,然后可视化
  3. 误差界限显著性区域 : 参考显著性分析理论,进行可视化

2.2 可变形网络空间支持

Faster R-CNN中Conv1-Conv4使用在Head中的,Conv5使用在Classification network上

ResNet-50 Conv5里边的3$\times​$3的卷积层都使用可变形卷积替换。Aligned RoI pooling 由 Deformable RoI Pooling取代,当offset学习率设置为0,那么Deformable RoI Pooling就退化为Aligned RoI Pooling。 ps: 这是V1中的操作。

从中观察到:

  1. 常规卷积可以一定程度上模拟几何变化,通过网络权重做到的
  2. 可变形卷积模拟几何变化能力显著提升,但是不够精确。

3. 更多可变形卷积层

v2 中进行改进的部分主要有三点

3.1 使用更多的可变形卷积

在Conv3, Conv4, Conv5中所有的3$\times​$3的卷积层全部被替换掉。对于pascal voc简单数据集,堆叠三层以上就会饱和。

3.2 在DCNv1基础(添加offset)上添加幅值参数

回顾一下DCNv1:

R 是相当于3$\times$3的kernel, \(p_0\)是当前中心点,\(p_n\)枚举每一个点。

可见,在普通卷积基础上,offset \(\Delta p_n​\)是主要改进点。

那DCNv2主要改了哪些地方?

在v1基础上,添加了\(\Delta m_k\), 一个控制幅值变化的量。

ROI pooling是如何改进的?

先看Faster R-CNN中的ROI Pooling:

然后先看DCNv1的Deformable RoI Pooling

主要是添加了offset fields \(\Delta p_{ij}\) 来控制偏移部分。

DCNv2的Deformable RoI Pooling也是将幅值引入,如下图:

类似的也添加了幅值变量,在训练的过程中进行学习。

3.3 R-CNN Feature Mimicking

采用了类似知识蒸馏的方法,用一个R-CNN分类网络作为teacher network 帮助Faster R-CNN更好收敛到目标区域内。

得到ROI之后,在原图中抠出这个ROI,resize到224x224,再送到一个RCNN中进行分类,这个RCNN只分类,不回归。然后,主网络fc2的特征去模仿RCNN fc2的特征,实际上就是两者算一个余弦相似度,1减去相似度作为loss即可

代码

GitHub几个源码

  1. <https://github.com/msracver/Deformable-ConvNets> 官方提供的版本,有DeepLab, Faster R-CNN, FPN, R-FCN等。源码使用的是mxnet。

  2. https://github.com/open-mmlab/mmdetection 集成了可变形卷积,源码使用的是pytorch。

  3. https://github.com/ChunhuanLin/deform_conv_pytorch 测试deform_conv_V1的准确度的demo.py,源码使用的是pytorch。
  4. https://github.com/4uiiurz1/pytorch-deform-conv-v2一个简单版本的DCNv2 ,源码使用的是pytorch
  5. https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 Pytorch 1.0 最新的完整的DCNv2

参考文献

https://blog.csdn.net/u013841196/article/details/80713314

http://arxiv.org/abs/1811.11168

https://www.cnblogs.com/jiujing23333/p/10059612.html

https://www.jianshu.com/p/23264e17d860

论文阅读:Deformable ConvNets v2的更多相关文章

  1. 论文阅读笔记四十:Deformable ConvNets v2: More Deformable, Better Results(CVPR2018)

    论文源址:https://arxiv.org/abs/1811.11168 摘要 可变形卷积的一个亮点是对于不同几何变化的物体具有适应性.但也存在一些问题,虽然相比传统的卷积网络,其神经网络的空间形状 ...

  2. 论文笔记:Deformable ConvNets v2: More Deformable, Better Results

    概要 MSRA在目标检测方向Beyond Regular Grid的方向上越走越远,又一篇大作推出,相比前作DCN v1在COCO上直接涨了超过5个点,简直不要太疯狂.文章的主要内容可大致归纳如下: ...

  3. 论文阅读笔记三十八:Deformable Convolutional Networks(ECCV2017)

    论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络 ...

  4. Deformable ConvNets

    Deformable ConvNets 论文 Deformable Convolutional Networks(arXiv:1703.06211) CNN受限于空间结构,具有较差的旋转不变性,较弱的 ...

  5. YOLO 论文阅读

    YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YO ...

  6. BERT 论文阅读笔记

    BERT 论文阅读 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 由 @快刀切草莓君 ...

  7. Action4D:人群和杂物中的在线动作识别:CVPR209论文阅读

    Action4D:人群和杂物中的在线动作识别:CVPR209论文阅读 Action4D: Online Action Recognition in the Crowd and Clutter 论文链接 ...

  8. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  9. BITED数学建模七日谈之三:怎样进行论文阅读

    前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...

随机推荐

  1. 【pip升级导致错误】 多个pip导致明明已经安装了包但是报no module错误

    原来一直用apt install 默认安装的pip 8.01版本,今天因为一些原因,将pip升级到了19.01.升级后就导致了错误. 直接pip installl --upgrade pip,发现报权 ...

  2. APP排查内存泄漏最简单和直观的方法

        内存泄漏无疑会严重影响用户体验,一些本应该废弃的资源和对象无法被释放,导致手机内存的浪费,app使用的卡顿,那么如何排查内存泄漏呢? 当然,首先我们有google的官方文档可以参考,大部分博客 ...

  3. stochastic noise and deterministic noise

    在机器学习中,导致overfitting的原因之一是noise,这个noise可以分为两种,即stochastic noise,随机噪声来自数据产生过程,比如测量误差等,和deterministic ...

  4. 无聊的活动/缘生意转(2018 Nova OJ新年欢乐赛B题)解题报告

    题目2(下面的太抓 我重新写了个背景 其他都一样) 无聊的活动 JLZ老师不情愿的参加了古风社一年一度的活动,他实在不觉得一群学生跳舞有什么好看,更不明白坐在身后的学生为什么这么兴奋(看小姐姐),于是 ...

  5. 修改 ubuntu NTFS 文件系统下没有执行权限的问题

    由于NTFS本身的特殊性,不能对其分区的文件权限进行修改,无论是sudo还是root都没有用. 安装以下两个插件解决问题: sudo apt-get install ntfs-3g //这个12.04 ...

  6. D2.Docker: 安装部署相关问题

    [mysql] docker 安装完mysql 后客户端无法访问

  7. java war包 远程debug出现的问题解决,学会查看日志

    开启远程debug之后,8005 关闭tomcat 又启动不了了.. netstat -lnp 未发现8005接口 eclipse 内远程链接到服务器,debug 下发现服务器线程启动也存在问题.很多 ...

  8. java当中请给出一个oracle的helloworld例子

    [学习笔记] 2.oracle的helloworld例子: import java.sql.*;public class OracleHello{    public static void main ...

  9. SpringBoot中使用@Scheduled创建定时任务

    SpringBoot中使用@Scheduled创建定时任务 定时任务一般会在很多项目中都会用到,我们往往会间隔性的的去完成某些特定任务来减少服务器和数据库的压力.比较常见的就是金融服务系统推送回调,一 ...

  10. C++_自引用指针this

    自引用指针this 例 3.1 this指针的引例 #include<iostream.h> class A{ public: A(int x1){ x=x1; } void disp() ...