bert系列二:《BERT》论文解读
论文《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》
以下陆续介绍bert及其变体(介绍的为粗体)
bert自从横空出世以来,引起广泛关注,相关研究及bert变体/扩展喷涌而出,如ELECTRA、DistilBERT、SpanBERT、RoBERTa、MASS、UniLM、ERNIE等。
由此,bert的成就不仅是打破了多项记录,更是开创了一副可期的前景。
1, Bert
在看bert论文前,建议先了解《Attention is all you need》论文。
创新点:
- 通过MLM,使用双向Transformer模型,获得更丰富的上下文信息
- 输入方式,句子级输入,可以是一个句子或2个句子,只要给定分隔标记即可
Transformer,多头注意力等概念见bert系列一
预训练语言表示应用到下游任务的2种方式
- feature-based:提取某层或多层特征用于下游任务。代表:ELMo
- fine-tuning:下游任务直接在预训练模型上添加若干层,微调即可。代表:OpenAI GPT,bert
MLM(masked language model):
文中操作为,对15%的token进行mask标记,被标记的token有80%的情况下以[MASK]代替,10%以随机token代替,10%不改变原始token。
为什么要mask操作?因为,要使用双向模型,就面临一个“看见自己”的问题,如bert系列一所述。那么我们将一个token mask掉(是什么蒙蔽了我的双眼?是mask),它就看不见自己啦!
为什么不对选中的token全部mask?因为,预训练中这么做没问题,而在下游任务微调时,[MASK] token是不会出现的,由此产生mismatch问题。
预训练与微调图示

如图,输入可以是一个句子,或2个句子,最后都转换成最大长度521的序列,序列的开头是一个[CLS]标记,用于分类或预测下一句等任务。句子之间也有一个[SEP]标记,用于分隔句子。
对于微调,如图示问答任务,用S表示答案开头,E表示答案末尾。第i个单词(Ti)作为答案开头的概率为:

即单词隐层表示Ti与开头S点乘后的softmax值。
候选范围i~j的得分为STi+ETj,取其中得分最大(i,j)的作为答案的预测范围。
输入Embedding使用3个嵌入相加,token嵌入层就是我们通常用的嵌入方式,segment用于区分一个token属于句子A还是B,Position用于位置编码(自注意需要)
如下图:

2, ELECTRA
再介绍一个参数少,训练快,性能好的ELECTRA。来自论文《ELECTRA: PRE-TRAINING TEXT ENCODERS AS DISCRIMINATORS RATHER THAN GENERATORS》
创新点:
不使用mask操作,而是从一个较小的生成器(文中建议大小为判别器的1/4到1/2)中采样来替换一些tokens,然后使用一个判别器去判断这个token是真实的还是生成器产生的。这样模型可以使用全部的tokens而非bert中15%mask的token去训练。
这有点像GAN(生成对抗网络)的概念,不同的是,这里的生成器并不以fool判别器为目标,而是基于极大似然原则训练(其实GAN也可以通过极大似然,只不过生成器反向传播更新需要通过鉴别器)。

如图,先标记若干位置为mask点,然后使用生成器采样的数据覆盖mask位置,再使用判别器判断每个token是原生的还是伪造的。
生成器及判别器的损失函数为:

生成器负责对选定的m个点使用极大似然训练,而判别器将要对所有的token进行真伪判断。
最终loss为加权和:

参数共享:
文中仅使用Embedding参数在生成器和判别器中共享(token和positional Embedding,这样做更高效)
3,DistilBERT
论文为《DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter》介绍部分我认为机器之心的这篇文章不错
机器之心:小版BERT也能出奇迹:最火的预训练语言库探索小巧之路
这里只总结一下
创新点
蒸馏模型之前也有。主要是使用了软目标交叉熵损失,以及学生网络初始化的方式。
成就
模型大小减到60%,保留97%语言理解能力,推理速度快60%
训练方式
训练方式为蒸馏(即使用学生网络模拟教师网络,这里bert-base作为教师网络)。
损失由3部分组成,一部分是学生网络与教师网络的软目标交叉熵,一部分为学生网络与教师网络隐状态矢量的嵌入余弦损失,一部分为掩饰语言模型(mlm)损失。其中前2个损失较为重要。
模型移除了token Embedding层和pooler(用于下一句预测),layer数量减到一半。学生网络的初始化也很重要,因为layer只有一半,所以初始化也是从2个layer中取1个。使用非常大的batch_size=4000等。
bert系列二:《BERT》论文解读的更多相关文章
- Bert系列(二)——源码解读之模型主体
本篇文章主要是解读模型主体代码modeling.py.在阅读这篇文章之前希望读者们对bert的相关理论有一定的了解,尤其是transformer的结构原理,网上的资料很多,本文内容对原理部分就不做过多 ...
- Bert系列 源码解读 四 篇章
Bert系列(一)——demo运行 Bert系列(二)——模型主体源码解读 Bert系列(三)——源码解读之Pre-trainBert系列(四)——源码解读之Fine-tune 转载自: https: ...
- Bert系列(三)——源码解读之Pre-train
https://www.jianshu.com/p/22e462f01d8c pre-train是迁移学习的基础,虽然Google已经发布了各种预训练好的模型,而且因为资源消耗巨大,自己再预训练也不现 ...
- nlp任务中的传统分词器和Bert系列伴生的新分词器tokenizers介绍
layout: blog title: Bert系列伴生的新分词器 date: 2020-04-29 09:31:52 tags: 5 categories: nlp mathjax: true ty ...
- swoft| 源码解读系列二: 启动阶段, swoft 都干了些啥?
date: 2018-8-01 14:22:17title: swoft| 源码解读系列二: 启动阶段, swoft 都干了些啥?description: 阅读 sowft 框架源码, 了解 sowf ...
- 网络结构解读之inception系列二:GoogLeNet(Inception V1)
网络结构解读之inception系列二:GoogLeNet(Inception V1) inception系列的开山之作,有网络结构设计的初期思考. Going deeper with convolu ...
- CVPR2019 | Mask Scoring R-CNN 论文解读
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...
- AAAI2019 | 基于区域分解集成的目标检测 论文解读
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...
- [论文解读] 阿里DIEN整体代码结构
[论文解读] 阿里DIEN整体代码结构 目录 [论文解读] 阿里DIEN整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 ...
随机推荐
- Java笔记(第七篇 JDBC操作数据库)
JDBC是连接数据库和java程序的桥梁,通过JDBC API可以方便地实现对各种主流数据库的操作.学习java语言,必须学习JDBC技术,因为JDBC技术实在java语言中被广泛使用的一种操作数据库 ...
- spark为什么比hadoop的mr要快?
1.前言 Spark是基于内存的计算,而Hadoop是基于磁盘的计算:Spark是一种内存计算技术. 但是事实上,不光Spark是内存计算,Hadoop其实也是内存计算. Spark和Hadoop的根 ...
- 12 saltstack部署OpenStack
参考源码:https://github.com/unixhot/salt-openstack nova control.sls
- sqlite3-python
官网资料 https://sqlite.org/lang_createtable.html 操作参考: https://www.runoob.com/sqlite/sqlite-insert.html ...
- Unknown property 'mybatis-plus' yml文件报错
就是因为没有对应的依赖 package com.taotao.config; import org.mybatis.spring.annotation.MapperScan; import org.s ...
- SCOI2014 bzoj3594 方伯伯的玉米田(二维树状数组+dp)
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1971 Solved: 961[Submit][St ...
- IVIEW组件的render方法在Table组件中的使用
后端项目地址:https://gitee.com/wlovet/table-server 前端项目地址: https://gitee.com/wlovet/table-project 一.Rende ...
- neo4j︱与python结合的py2neo使用教程
—- 目前的几篇相关:—– neo4j︱图数据库基本概念.操作罗列与整理(一) neo4j︱Cypher 查询语言简单案例(二) neo4j︱Cypher完整案例csv导入.关系联通.高级查询(三) ...
- Django-静态文件导入/url命名及反向解析
一.静态文件导入 js.css.img等都叫做静态文件,那么关于django中静态文件的配置,我们就需要在settings配置文件里面写上这写内容: # STATIC_URL = '/xxx/' #别 ...
- Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F
比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...