NetworkX系列教程(10)-算法之三:关键路径问题
重头戏部分来了,写到这里我感觉得仔细认真点了,可能在NetworkX中,实现某些算法就一句话的事,但是这个算法是做什么的,用在什么地方,原理是怎么样的,不清除,所以,我决定先把图论
中常用算法弄个明白在写这部分.
图论常用算法看我的博客:
下面我将使用NetworkX实现上面的算法,建议不清楚的部分打开两篇博客对照理解.
我将图论的经典问题及常用算法的总结写在下面两篇博客中:
图论---问题篇
图论---算法篇
目录:
* 11.3关键路径算法(CPA)
注意:如果代码出现找不库,请返回第一个教程,把库文件导入.
11.3关键路径算法(CPA)
以下代码从这里复制,由于版本问题,将代码中的:nx.topological_sort(self, reverse=True)
改为list(reversed(list(nx.topological_sort(self))))
- import networkx as nx
- import matplotlib.pyplot as plt
- from matplotlib.font_manager import *
- #定义自定义字体,文件名从1.b查看系统中文字体中来
- myfont = FontProperties(fname='/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc')
- #解决负号'-'显示为方块的问题
- matplotlib.rcParams['axes.unicode_minus']=False
- class CPM(nx.DiGraph):
- def __init__(self):
- super().__init__()
- self._dirty = True
- self._critical_path_length = -1
- self._criticalPath = None
- def add_node(self, *args, **kwargs):
- self._dirty = True
- super().add_node(*args, **kwargs)
- def add_nodes_from(self, *args, **kwargs):
- self._dirty = True
- super().add_nodes_from(*args, **kwargs)
- def add_edge(self, *args): # , **kwargs):
- self._dirty = True
- super().add_edge(*args) # , **kwargs)
- def add_edges_from(self, *args, **kwargs):
- self._dirty = True
- super().add_edges_from(*args, **kwargs)
- def remove_node(self, *args, **kwargs):
- self._dirty = True
- super().remove_node(*args, **kwargs)
- def remove_nodes_from(self, *args, **kwargs):
- self._dirty = True
- super().remove_nodes_from(*args, **kwargs)
- def remove_edge(self, *args): # , **kwargs):
- self._dirty = True
- super().remove_edge(*args) # , **kwargs)
- def remove_edges_from(self, *args, **kwargs):
- self._dirty = True
- super().remove_edges_from(*args, **kwargs)
- #根据前向拓扑排序算弧的最早发生时间
- def _forward(self):
- for n in nx.topological_sort(self):
- es = max([self.node[j]['EF'] for j in self.predecessors(n)], default=0)
- self.add_node(n, ES=es, EF=es + self.node[n]['duration'])
- #根据前向拓扑排序算弧的最迟发生时间
- def _backward(self):
- #for n in nx.topological_sort(self, reverse=True):
- for n in list(reversed(list(nx.topological_sort(self)))):
- lf = min([self.node[j]['LS'] for j in self.successors(n)], default=self._critical_path_length)
- self.add_node(n, LS=lf - self.node[n]['duration'], LF=lf)
- #最早发生时间=最迟发生时间,则判断该节点为关键路径上的关键活动
- def _compute_critical_path(self):
- graph = set()
- for n in self:
- if self.node[n]['EF'] == self.node[n]['LF']:
- graph.add(n)
- self._criticalPath = self.subgraph(graph)
- @property
- def critical_path_length(self):
- if self._dirty:
- self._update()
- return self._critical_path_length
- @property
- def critical_path(self):
- if self._dirty:
- self._update()
- return sorted(self._criticalPath, key=lambda x: self.node[x]['ES'])
- def _update(self):
- self._forward()
- self._critical_path_length = max(nx.get_node_attributes(self, 'EF').values())
- self._backward()
- self._compute_critical_path()
- self._dirty = False
- if __name__ == "__main__":
- #构建graph
- G = CPM()
- G.add_node('A', duration=5)
- G.add_node('B', duration=2)
- G.add_node('C', duration=4)
- G.add_node('D', duration=4)
- G.add_node('E', duration=3)
- G.add_node('F', duration=7)
- G.add_node('G', duration=4)
- G.add_edges_from([
- ('A', 'B'),
- ('A', 'C'),
- ('C','D'),
- ('C','E'),
- ('C','G'),
- ('B','D'),
- ('D','F'),
- ('E','F'),
- ('G','F'),
- ])
- #显示graph
- nx.draw_spring(G,with_labels=True)
- plt.title('AOE网络',fontproperties=myfont)
- plt.axis('on')
- plt.xticks([])
- plt.yticks([])
- plt.show()
- print('关键活动为:')
- print(G.critical_path_length, G.critical_path)
- G.add_node('D', duration=2)
- print('\n修改D活动持续时间4为2后的关键活动为:')
- print(G.critical_path_length, G.critical_path)

从graph中可以知道,有两条关键路径,分别是:A->C->G->F
和A->C->D->F
,长度都是20.
输出:
关键活动为: 20 ['A', 'C', 'D', 'G', 'F']
修改D活动持续时间4为2后的关键活动为: 20 ['A', 'C', 'G', 'F']
关键活动为: ['A', 'C', 'D', 'G', 'F'],可以构成两条边.D活动持续时间4为2后,关键路径变化.
NetworkX系列教程(10)-算法之三:关键路径问题的更多相关文章
- NetworkX系列教程(10)-算法之五:广度优先与深度优先
小书匠Graph图论 重头戏部分来了,写到这里我感觉得仔细认真点了,可能在NetworkX中,实现某些算法就一句话的事,但是这个算法是做什么的,用在什么地方,原理是怎么样的,不清除,所以,我决定先把图 ...
- NetworkX系列教程(10)-算法之四:拓扑排序与最大流问题
小书匠Graph图论 重头戏部分来了,写到这里我感觉得仔细认真点了,可能在NetworkX中,实现某些算法就一句话的事,但是这个算法是做什么的,用在什么地方,原理是怎么样的,不清除,所以,我决定先把图 ...
- NetworkX系列教程(10)-算法之二:最小/大生成树问题
小书匠 Graph 图论 重头戏部分来了,写到这里我感觉得仔细认真点了,可能在NetworkX中,实现某些算法就一句话的事,但是这个算法是做什么的,用在什么地方,原理是怎么样的,不清除,所以,我决定 ...
- NetworkX系列教程(10)-算法之一:最短路径问题
小书匠Graph图论 重头戏部分来了,写到这里我感觉得仔细认真点了,可能在NetworkX中,实现某些算法就一句话的事,但是这个算法是做什么的,用在什么地方,原理是怎么样的,不清除,所以,我决定先把图 ...
- NetworkX系列教程(9)-线性代数相关
小书匠 Graph 图论 学过线性代数的都了解矩阵,在矩阵上的文章可做的很多,什么特征矩阵,单位矩阵等.grpah存储可以使用矩阵,比如graph的邻接矩阵,权重矩阵等,这节主要是在等到graph后 ...
- NetworkX系列教程(2)-graph生成器
小书匠Graph图论 本节主要讲解如何快速使用内置的方法生成graph,官方的文档在这里,里面包含了networkX的所有graph生成器,下面的内容只是我节选的内容,并将graph画出来而已. 声明 ...
- NetworkX系列教程(1)-创建graph
小书匠Graph图论 研究中经常涉及到图论的相关知识,而且常常面对某些术语时,根本不知道在说什么.前不久接触了NetworkX这个graph处理工具,发现这个工具已经解决绝大部分的图论问题(也许只是我 ...
- HTML5游戏开发系列教程10(译)
原文地址:http://www.script-tutorials.com/html5-game-development-lesson-10/ 最后我们将继续使用canvas来进行HTML5游戏开发系列 ...
- Python Twisted系列教程10:增强defer功能的客户端
作者:dave@http://krondo.com/an-introduction-to-asynchronous-programming-and-twisted/ 译者:杨晓伟(采用意译) 可以从这 ...
随机推荐
- Scratch编程:游泳的火柴人(四)
“ 上节课的内容全部掌握了吗?反复练习了没有,编程最好的学习方法就是练习.练习.再练习.一定要记得多动手.多动脑筋哦~~” 01 — 游戏介绍 这是一款简单的小游戏,实现了一个手绘的火柴人在水里游泳. ...
- NIO-FileChannel源码分析
目录 NIO-FileChannel源码分析 目录 前言 RandomAccessFile 接口 创建实例 获取文件通道 FileChannelImpl 创建 写文件 读文件 修改起始位置 获取文件长 ...
- shell 学习笔记7-shell-函数
一.函数 1.什么是shell函数 把相同程序段定义成函数,可以减少整个程序的代码量,提升开发效率 增加程序的可读性,易读性,提升管理效率 可以失效程序功能模块化,使程序具备可移植性 其实linux系 ...
- 使用angularJS设置复选框的回显状态
思路分析: 在angularJS中,我们可以使用ng-checked="expression()"来设置复选框的状态:当expression()返回true时,该复选框为选择中状态 ...
- 一种电平转换的方法,使用CPLD
参考应用笔记 http://www.doc88.com/p-0197252336968.html 前言 在原理图设计初期,可能涉及到引脚电平的转换操作,比如主FPGA的某BANK电平为1.5V,但外围 ...
- 【日语】日语单词N3_N4_N5
日语单词N3_N4_N5 单 词 讲 解 あ行单词 ああ:0[副]那样.那种 例句:ああ言うことはしないほうがいい.那样的事情最好不做. 電車の窓からごみを棄てているああ言うことはしないほうがいい. ...
- 正padding负margin实现多列等高布局(转)
转自: 巧妙运用CSS中的负值 (http://www.webhek.com/post/2345qwerqwer.html) 代码来自: https://codepen.io/Chokcoco/pen ...
- Image Processing and Computer Vision_Review:A Performance Evaluation of Local Descriptors——2005.08
翻译 本地描述符的性能评估——http://tongtianta.site/paper/56756 摘要 - 在本文中,我们比较了为局部感兴趣区域计算的描述符的性能,例如,由Harris-Affine ...
- c# 接口使用
- Python语言程序设计:Lab4
Programming 1.Analysing a Text File Look at the file xian_info.txt which is like this: Xi'an China 8 ...