题目链接:

[APIO2017]商旅

枚举任意两个点$(s,t)$,求出在$s$买入一个物品并在$t$卖出的最大收益。

新建一条从$s$到$t$的边,边权为最大收益,长度为原图从$s$到$t$的最短路,最短路用$floyd$求即可。

对于原图的边,边权为$0$,长度为输入长度。

对于新图,需要找到一个环使得换上边的边权和比长度和最大。

显然二分答案然后分数规划,之后就变成了判断图中是否有负环,用SPFA判负环即可。

注意此题卡精,需要使用$long\ double$。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define ld long double
using namespace std;
const double eps=1e-10;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int read() {int x=0,flag=1; char c=nc();if(c=='-'){flag=-1,c=nc();} while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return flag*x;}
int f[110][110];
int head[110];
int next[200000];
int to[200000];
int a[200000];
int b[200000];
ld v[200000];
int vis[110];
int cnt[110];
queue<int>que;
int s[110][1010];
int t[110][1010];
int tot;
int n,m,q;
int x,y,z;
ld ans;
ld dis[110];
void add(int x,int y,int w,int z)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
a[tot]=w;
b[tot]=z;
}
bool SPFA(int S)
{
dis[S]=0;
que.push(S);
vis[S]=1;
while(!que.empty())
{
int now=que.front();
que.pop();
vis[now]=0;
for(int i=head[now];i;i=next[i])
{
if(dis[to[i]]>dis[now]+v[i])
{
dis[to[i]]=dis[now]+v[i];
cnt[to[i]]=cnt[now]+1;
if(cnt[to[i]]>150)
{
return true;
}
if(!vis[to[i]])
{
vis[to[i]]=1;
que.push(to[i]);
}
}
}
}
return false;
}
int main()
{
n=read();m=read();q=read();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=q;j++)
{
s[i][j]=read();t[i][j]=read();
}
}
memset(f,0x3f,sizeof(f));
for(int i=1;i<=m;i++)
{
x=read();y=read();z=read();
f[x][y]=min(f[x][y],z);
add(x,y,0,z);
}
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(f[i][j]==0x3f)continue;
int mx=-1;
for(int k=1;k<=q;k++)
{
int num;
if(s[i][k]==-1||t[j][k]==-1||s[i][k]>=t[j][k])continue;
else num=t[j][k]-s[i][k];
mx=max(mx,num);
}
if(mx==-1)continue;
add(i,j,mx,f[i][j]);
}
}
ld l=0,r=1e12;
ans=-1;
while(r-l>=eps)
{
ld mid=(l+r)/2;
for(int i=1;i<=tot;i++)
{
v[i]=mid*b[i]-a[i];
}
for(int i=1;i<=n;i++)
{
dis[i]=0;
vis[i]=cnt[i]=0;
}
int flag=0;
for(int i=1;i<=n;i++)
{
if(dis[i]==0)
{
if(SPFA(i))
{
l=mid;
ans=mid;
flag=1;
break;
}
}
}
if(!flag)
{
r=mid;
}
}
printf("%lld",ans==-1?0ll:(ll)(ans+eps));
}

[APIO2017]商旅——分数优化+floyd+SPFA判负环+二分答案的更多相关文章

  1. 【HNOI2009】最小圈 题解(SPFA判负环+二分答案)

    前言:模拟赛考试题,不会做,写了个爆搜滚蛋仍然保龄. --------------------- 题目链接 题目大意:给定一张有向图,求一个环,使得这个环的长度与这个环的大小(所含结点个数)的比值最小 ...

  2. BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划

    BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划 更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant%28zh_ ...

  3. [HNOI2009]最小圈 分数规划 spfa判负环

    [HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...

  4. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  5. [P1768]天路(分数规划+SPFA判负环)

    题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...

  6. spfa判负环

    bfs版spfa void spfa(){ queue<int> q; ;i<=n;i++) dis[i]=inf; q.push();dis[]=;vis[]=; while(!q ...

  7. POJ 3259 Wormholes(SPFA判负环)

    题目链接:http://poj.org/problem?id=3259 题目大意是给你n个点,m条双向边,w条负权单向边.问你是否有负环(虫洞). 这个就是spfa判负环的模版题,中间的cnt数组就是 ...

  8. Poj 3259 Wormholes(spfa判负环)

    Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 42366 Accepted: 15560 传送门 Descr ...

  9. poj 1364 King(线性差分约束+超级源点+spfa判负环)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14791   Accepted: 5226 Description ...

随机推荐

  1. win10下,cmd,power shell设置默认编码为‘UTF-8

    power shell 注:以下内容在非Windows平台上写的,可能会有拼写错误,如果有,请指正,我会尽快修正.可以用Powershell的配置文件(\(PROFILE)来实现.\)PROFILE默 ...

  2. 数据结构之链表(LinkedList)(一)

    链表(Linked List)介绍 链表是有序的列表,但是它在内存中是存储如下 1)链表是以节点方式存储的,是链式存储 2)每个节点包含data域(value),next域,指向下一个节点 3)各个节 ...

  3. nginx Proxy Cache 配置

    总结一下 proxy cache 设置的常用指令及使用方法: proxy_cache proxy_cache zone | off 配置一块公用的内存区域的名称,该区域可以存放缓存的索引数据.注意:z ...

  4. webdispatch配置

    PRDPISP01:/sapmnt/WIP/profile # su - wipadm PRDPISP01:wipadm 23> cdpro PRDPISP01:wipadm 24> ls ...

  5. Intellij的Terminal框里输入npm无效

    Intellij的Terminal框里输入npm无效,解决办法: 1.安装node.js的时候选择全部安装: 2.在intellij的file->settings->Tools->T ...

  6. springboot学习入门简易版二---springboot2.0项目创建

    2 springboot项目创建(5) 环境要求:jdk1.8+ 项目结构: 2.1创建maven工程 Group id :com.springbootdemo Artifact id: spring ...

  7. 配置和查看composer镜像

    composer 默认地址改为中国镜像地址,以及中国镜像地址还原成默认地址 一.查看当前镜像地址 在命令行输入如下命令,即可查看全局镜像地址: $ composer config -g repo.pa ...

  8. Android笔记(七) Android中的布局——线性布局

    我们的软件是由好多个界面组成的,而每个界面又由N多个控件组成,Android中借助布局来让各个空间有条不紊的摆放在界面上. 可以把布局看作是一个可以放置很多控件的容器,它可以按照一定的规律调整控件的位 ...

  9. 更改Ubuntu下默认Python版本

    更改Ubuntu下默认Python版本 首先查看系统内有哪些版本的Python ls /usr/bin/python* 查看当前python版本 python --version 基于用户修改默认版本 ...

  10. zabbix 3.2.2 server web展示如何显示中文 (三)

    1.确认zabbix是否开启了中文支持功能(/var/www/html/zabbix/include/locales.inc.php) 2.登录zabbix后,点击可爱的小公主吧 Admin(zabb ...