We have a list of points on the plane.  Find the K closest points to the origin (0, 0).

(Here, the distance between two points on a plane is the Euclidean distance.)

You may return the answer in any order.  The answer is guaranteed to be unique (except for the order that it is in.)

Example 1:

Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:

Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)
 class Solution {
// Approach 1
public int[][] kClosest1(int[][] points, int K) {
PriorityQueue<int[]> pq = new PriorityQueue<int[]>((p1, p2) -> p2[] * p2[] + p2[] * p2[] - p1[] * p1[] - p1[] * p1[]);
for (int[] p : points) {
pq.offer(p);
if (pq.size() > K) {
pq.poll();
}
}
int[][] res = new int[K][];
while (K > ) {
res[--K] = pq.poll();
}
return res;
} // Approach 2
public int[][] kClosest2(int[][] points, int K) {
int len = points.length, l = , r = len - ;
while (l <= r) {
int mid = partition(points, l, r);
if (mid == K) {
break;
} else if (mid < K) {
l = mid + ;
} else {
r = mid - ;
}
}
return Arrays.copyOfRange(points, , K);
} private int compare(int[] p1, int[] p2) {
return p1[] * p1[] + p1[] * p1[] - p2[] * p2[] - p2[] * p2[];
} private int partition(int[][] A, int start, int end) {
int p = start;
for (int i = start; i <= end - ; i++) {
if (compare(A[i], A[end]) < ) {
swap(A, p, i);
p++;
}
}
swap(A, p, end);
return p;
} private void swap(int[][] nums, int i, int j) {
int[] temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}

K Closest Points to Origin的更多相关文章

  1. [Swift]LeetCode973. 最接近原点的 K 个点 | K Closest Points to Origin

    We have a list of points on the plane.  Find the K closest points to the origin (0, 0). (Here, the d ...

  2. [Solution] 973. K Closest Points to Origin

    Difficulty: Easy Problem We have a list of points on the plane. Find the K closest points to the ori ...

  3. LeetCode 973 K Closest Points to Origin 解题报告

    题目要求 We have a list of points on the plane.  Find the K closest points to the origin (0, 0). (Here, ...

  4. LeetCode 973. K Closest Points to Origin

    原题链接在这里:https://leetcode.com/problems/k-closest-points-to-origin/ 题目: We have a list of points on th ...

  5. 973. K Closest Points to Origin

    We have a list of points on the plane.  Find the K closest points to the origin (0, 0). (Here, the d ...

  6. 119th LeetCode Weekly Contest K Closest Points to Origin

    We have a list of points on the plane.  Find the K closest points to the origin (0, 0). (Here, the d ...

  7. LC 973. K Closest Points to Origin

    We have a list of points on the plane.  Find the K closest points to the origin (0, 0). (Here, the d ...

  8. 【leetcode】973. K Closest Points to Origin

    题目如下: We have a list of points on the plane.  Find the Kclosest points to the origin (0, 0). (Here, ...

  9. 【LeetCode】973. K Closest Points to Origin 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 小根堆 日期 题目地址:https://leetco ...

随机推荐

  1. CDOJ 1255 斓少摘苹果 图论 2016_5_14

    斓少摘苹果 Time Limit: 3000/3000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit  St ...

  2. objdump命令解析

    [objdump] 相关链接: 实例分析objdump反汇编用法 - 在路上 - CSDN博客  https://blog.csdn.net/u012247418/article/details/80 ...

  3. 推荐系统系列(一):FM理论与实践

    背景 在推荐领域CTR(click-through rate)预估任务中,最常用到的baseline模型就是LR(Logistic Regression).对数据进行特征工程,构造出大量单特征,编码之 ...

  4. MySQL_(Java)提取工具类JDBCUtils

    MySQL_(Java)使用JDBC向数据库发起查询请求 传送门 MySQL_(Java)使用JDBC创建用户名和密码校验查询方法 传送门 MySQL_(Java)使用preparestatement ...

  5. mysql基础知识语法汇总整理(二)

    mysql基础知识语法汇总整理(一) insert /*insert*/ insert into 表名(字段列表) values(值列表); --蠕虫复制 (优点:快速复制数据,测试服务器压力) in ...

  6. MVC中上传文件

    与asp.net中几乎一样,使用表单提交的方式上传文件(如果是使用了第三方插件的话,那么就另当别论) @{ ViewBag.Title = "Index"; Layout = nu ...

  7. 尚学堂requireJs课程---3、私有和公有属性和方法

    尚学堂requireJs课程---3.私有和公有属性和方法 一.总结 一句话总结: 在 [模块] 的基础上,在return对象里面的方法和属性就是公有的(因为外部可以访问),不在的就是私有的 < ...

  8. redux异步

    在一个项目中 redux 是必不可少的,redux 中没有提供异步的操作,但是异步又是项目开发中重要的一部分,所以我们的 redux 对此有进行了拓展: 所以我们需要 redux-thunk 的插件, ...

  9. php 获取域名

    echo 'SERVER_NAME:'.$_SERVER['SERVER_NAME'];  //获取当前域名(不含端口号) echo '<p>';   echo 'HTTP_HOST:'. ...

  10. [go]go环境安装-解决安装包不能访问golang.org问题

    安装go和vscode vscode插件列表选择go,安装即可,其他插件暂不安装 手动安装一些vscode配套的调试工具等 直接vscode-go,然后点下面的go-tools就能找到 go get ...