We have a list of points on the plane.  Find the K closest points to the origin (0, 0).

(Here, the distance between two points on a plane is the Euclidean distance.)

You may return the answer in any order.  The answer is guaranteed to be unique (except for the order that it is in.)

Example 1:

Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:

Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)
 class Solution {
// Approach 1
public int[][] kClosest1(int[][] points, int K) {
PriorityQueue<int[]> pq = new PriorityQueue<int[]>((p1, p2) -> p2[] * p2[] + p2[] * p2[] - p1[] * p1[] - p1[] * p1[]);
for (int[] p : points) {
pq.offer(p);
if (pq.size() > K) {
pq.poll();
}
}
int[][] res = new int[K][];
while (K > ) {
res[--K] = pq.poll();
}
return res;
} // Approach 2
public int[][] kClosest2(int[][] points, int K) {
int len = points.length, l = , r = len - ;
while (l <= r) {
int mid = partition(points, l, r);
if (mid == K) {
break;
} else if (mid < K) {
l = mid + ;
} else {
r = mid - ;
}
}
return Arrays.copyOfRange(points, , K);
} private int compare(int[] p1, int[] p2) {
return p1[] * p1[] + p1[] * p1[] - p2[] * p2[] - p2[] * p2[];
} private int partition(int[][] A, int start, int end) {
int p = start;
for (int i = start; i <= end - ; i++) {
if (compare(A[i], A[end]) < ) {
swap(A, p, i);
p++;
}
}
swap(A, p, end);
return p;
} private void swap(int[][] nums, int i, int j) {
int[] temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}

K Closest Points to Origin的更多相关文章

  1. [Swift]LeetCode973. 最接近原点的 K 个点 | K Closest Points to Origin

    We have a list of points on the plane.  Find the K closest points to the origin (0, 0). (Here, the d ...

  2. [Solution] 973. K Closest Points to Origin

    Difficulty: Easy Problem We have a list of points on the plane. Find the K closest points to the ori ...

  3. LeetCode 973 K Closest Points to Origin 解题报告

    题目要求 We have a list of points on the plane.  Find the K closest points to the origin (0, 0). (Here, ...

  4. LeetCode 973. K Closest Points to Origin

    原题链接在这里:https://leetcode.com/problems/k-closest-points-to-origin/ 题目: We have a list of points on th ...

  5. 973. K Closest Points to Origin

    We have a list of points on the plane.  Find the K closest points to the origin (0, 0). (Here, the d ...

  6. 119th LeetCode Weekly Contest K Closest Points to Origin

    We have a list of points on the plane.  Find the K closest points to the origin (0, 0). (Here, the d ...

  7. LC 973. K Closest Points to Origin

    We have a list of points on the plane.  Find the K closest points to the origin (0, 0). (Here, the d ...

  8. 【leetcode】973. K Closest Points to Origin

    题目如下: We have a list of points on the plane.  Find the Kclosest points to the origin (0, 0). (Here, ...

  9. 【LeetCode】973. K Closest Points to Origin 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 小根堆 日期 题目地址:https://leetco ...

随机推荐

  1. php+列出目录文件

    用过浏览器的开发人员都对大文件上传与下载比较困扰,之前遇到了一个php文件夹上传下载的问题,无奈之下自己开发了一套文件上传控件,在这里分享一下.希望能对你有所帮助.此控件PC全平台支持包括mac,li ...

  2. 初识 ZeroMQ

    由于网上和官方的ZeroMQ主要是讲解和说明大都是基于C.PHP.Java偏偏.Net的很少,可能你看完80多页的官方文档仍被C代码搞的晕晕乎乎的,我这里就将资料收集整理成几篇博文同时用c#重新实现D ...

  3. JVM GC之对象生死

    1.简述 在Java内存运行时区域的各个部分中,程序计数器.虚拟机栈.本地方法栈3个区域随着线程而生,随着线程而亡.栈中的栈帧随着方法的进入和退出而有条不紊的进行着入栈和出栈操作. 每个栈帧需要分配多 ...

  4. [c++] C++中public、protected、private的区别

    转:https://blog.csdn.net/vanturman/article/details/79393317 第一: private,public,protected的访问范围: privat ...

  5. Teamviewer解决许可证授权的问题

    提交商业用途表 https://www.teamviewer.com/zhCN/pricing/commercial-use/

  6. c源码编译

    #include<stdio.h> #include<math.h> //程序中要调用求平方根函数sqrt int main() { double a,b,c,disc,x1, ...

  7. EBS 修改系统颜色

    1)修改 配置文件: Java 色彩设计,选择相应的颜色 2)清理高速缓存 注:如果不清理缓存,则要等15分钟后才显示变成新设定的颜色

  8. setHasFixedSize(true)的意义 (转)

    RecyclerView setHasFixedSize(true)的意义 2017年07月07日 16:23:04 阅读数:6831 <span style="font-size:1 ...

  9. 在已开启Chrome窗口上调试

    代码 @Test void testNow() { /* First: Add the chrome.exe to the PATH. * Then: open the cmd and input t ...

  10. XPATH了解

    特殊标签 找SVG这种特殊标签可以使用[name()='svg'],如//[name()='svg']/[name()='line'][2] 文本 找标签内的文本时可以使用: //*[text()=' ...