题解:P6672 [清华集训2016] 你的生命已如风中残烛

标签

组合数学

分析

首先引入一个引理。

Raney 引理

对于一个长度为 \(n\) 的序列 \(a\),如果 \(\sum\limits_{i=1}^{n}=1\),那么这个序列 \(a\) 的所有循环位移中恰好有一种满足其前缀和序列的所有元素都是正数。

现在看看这道题。题意就是你共有 \(m\) 张牌,\(n\) 张特殊牌。普通牌为 \(0\),特殊牌有一个值 \(w_i\),可以再取 \(w_i\) 张牌,问这些牌有多少种排列情况可以一次取完。

我们可以把每个 \(w_i\) 都减 \(1\)。这样每个普通牌就会变成 \(-1\),刚好相当于牌的数量减少 \(1\)。形象来说,可以把特殊牌看做“欠的债”,普通牌就是每次还一个债,当债还完了刚好就是 \(-1\),此时也相当于手牌出完了。

拿题目所给的序列 \(\{4,0,0,2,0,0,0\}\) 为例,每一位 \(-1\) 后为 \(\{3,-1,-1,1,-1,-1,-1\}\)。

模拟一下出牌过程中还需要取的牌数:\(3\Rightarrow 2\Rightarrow 1 \Rightarrow 2\Rightarrow 1\Rightarrow 0\Rightarrow -1\)。

发现这就是前缀和,而且要赢就需要前 \(m\) 个每个前缀和都非负。设 \(w_i\) 的前缀和是 \(S_i\)。因为最后肯定全部出完所以最后的前缀和 \(S_n\) 肯定是 \(-1\) 可以忽略,并且最后一张牌肯定不会是特殊牌,所以 \(S_{n-1}\) 肯定是 \(0\)。很像刚刚说的 \(\texttt{Raney}\) 引理。不过有区别的两点是,现在的 \(\sum w_i=0\),并且所求结果限制为非负而不是正数。

为了套用 \(\texttt{Raney}\) 引理,很容易想到在序列开头固定一个 \(1\),这样最终序列和为 \(1\) 且限制条件由非负变正数,答案就是构造后的序列的圆排列数量。不过在加了 \(1\) 之后,方案数会变多,因为在合法的方案中你无法保证这个 \(1\) 一定在开头。考虑反例:\(\{1,3,-1,-1,1,-1,-1\}\),其中有两种合法方案,\(\{3,-1,-1,1,-1,{\color{red}1},-1\}\) 和 \(\{3,-1,-1,1,{\color{red}1},-1,-1\}\)。会发现把新加的 \({\color{red}1}\) 去掉之后其实是一种情况。

思考什么会保证位置不变,能想到在末尾加一个 \(-1\)。因为这个 \(-1\) 如果放在前面一定会使答案更劣所以位置肯定会保持在末尾。但这样怎么套用 \(\texttt{Raney}\) 引理呢?比较好想的一种办法可以把整个序列都取反(包括新加的 \(-1\)),这样序列之和就从原来的 \(-1\) 变成 \(1\),此时可以将这个序列倒置过来,这样开头就一定是 \(1\),再用前缀和(就是原序列后缀和)就可以套用 \(\texttt{Raney}\) 引理了。

现在我们这个序列圆排列的数量是 \(m!\)(因为 \(-1\) 被固定在了末尾),根据\(\texttt{Raney}\) 引理每个圆排列都有一种合法的情况。因为我们新加的 \(-1\) 和原本 \(m-n\) 普通牌代表的 \(-1\) 有所重复,所以要除去重复的情况 \(m-n+1\) 种,最终结果就是 \(\dfrac{m!}{m-n+1}\)。

直接计算输出即可,不贴代码了。

题解:P6672 [清华集训2016] 你的生命已如风中残烛的更多相关文章

  1. 洛谷 P6672 - [清华集训2016] 你的生命已如风中残烛(组合数学)

    洛谷题面传送门 题解里一堆密密麻麻的 Raney 引理--蒟蒻表示看不懂,因此决定写一篇题解提供一个像我这样的蒟蒻能理解的思路,或者说,理解方式. 首先我们考虑什么样的牌堆顺序符合条件.显然,在摸牌任 ...

  2. UOJ273 [清华集训2016] 你的生命已如风中残烛 【数学】

    题目分析: 把$0$卡牌看成$-1$.题目要求前缀和始终大于等于$1$. 最后添加一个$-1$,这样除了最后一位之外大于等于1,最后一位等于0. 构造圆排列.这样的话一个圆排列只有一个满足的情况,然后 ...

  3. P6672-[清华集训2016]你的生命已如风中残烛【结论】

    正题 题目链接:https://www.luogu.com.cn/problem/P6672 题目大意 长度为\(m\)的序列\(a\),有\(n\)个数字不是\(0\),其他\(m-n\)个是\(0 ...

  4. P6666 [清华集训2016] 数据交互 题解

    ## P6666 [清华集训2016] 数据交互 题解 ### 简要题意: n个点的树,m次操作,分别为添加一条路径$(u_i,v_i,w_i)$,和撤消一条路径,每一次操作后求出一条路径使得与这条路 ...

  5. 【UOJ274】【清华集训2016】温暖会指引我们前行 LCT

    [UOJ274][清华集训2016]温暖会指引我们前行 任务描述 虽然小R住的宿舍楼早已来了暖气,但是由于某些原因,宿舍楼中的某些窗户仍然开着(例如厕所的窗户),这就使得宿舍楼中有一些路上的温度还是很 ...

  6. [LOJ#2329]「清华集训 2017」我的生命已如风中残烛

    [LOJ#2329]「清华集训 2017」我的生命已如风中残烛 试题描述 九条可怜是一个贪玩的女孩子. 这天她在一堵墙钉了 \(n\) 个钉子,第 \(i\) 个钉子的坐标是 \((x_i,y_i)\ ...

  7. [UOJ#276]【清华集训2016】汽水

    [UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...

  8. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  9. bzoj 4736 /uoj274【清华集训2016】温暖会指引我们前行 lct

    [清华集训2016]温暖会指引我们前行 统计 描述 提交 自定义测试 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了 ...

  10. uoj266[清华集训2016]Alice和Bob又在玩游戏(SG函数)

    uoj266[清华集训2016]Alice和Bob又在玩游戏(SG函数) uoj 题解时间 考虑如何求出每棵树(子树)的 $ SG $ . 众所周知一个状态的 $ SG $ 是其后继的 $ mex $ ...

随机推荐

  1. Docker 容器中镜像导出/导入

    目录 [容器]镜像导出/导入 导出 导入 带标签 不带标签,后期修改 [仓库]镜像导出/导入 导出 导入 导入(完整命令) 创建一个简单的Docker镜像 利用docker ps -a命令查看要导出的 ...

  2. JavaScript设计模式样例六 —— 抽象工厂模式

    抽象工厂模式(Abstract Factory Pattern) 定义:抽象工厂模式提供了一种方式,可以将一组具有同一主题的单独的工厂封装起来.或者说,是其他工厂的工厂.目的:提供一个创建一系列相关或 ...

  3. 离线安装python包

    1.制作requirement.txt pip freeze > requirements.txt 2.离线下载安装包 #下载单个离线包 pip download -d your_offline ...

  4. SpringBoot多环境日志配置

    SpringBoot多环境日志配置 SpringBoot 默认使用 LogBack 日志系统 默认情况下,SpringBoot项目的日志只会在控制台输入. 如果想查询历史日志则无法找到,我们需要一个日 ...

  5. 【YashanDB知识库】oracle dblink varchar类型查询报错记录

    问题单:Oracle DBLINK查询崖山DB报错 oracle服务器上ODBC安装 unixodbc安装:yum -y install unixODBC mysql 配置安装对应版本的odbc: m ...

  6. CSS & JS Effect – Image hover animation

    效果 效果来自: webflow 的一个模板 需求解释 有 3 给元素, 图片, overlay(黑影), link mouse enter 的时候, 图片要 zoom in. overlay 要 f ...

  7. Element——前端样式美化

    Element 简介    Element 快速入门      https://element.eleme.cn/#/zh-CN/component/button Element 布局      ht ...

  8. mac M1,M2,M3芯片踩坑 nodejs ruby brew

    问题&解决方法 先说解决方法, 感兴趣的可以了解事情的经过, 也许我描述的问题不专业, 但确实解决了当下的问题, 欢迎留言讨论 这里主要是两个问题, 一个是启用rosetta模式失败, 一个是 ...

  9. [TK] 盖房子 hzoi-tg#262

    同机房大佬也写了这题的 题解. 通解分析 此类问题我通常喜欢归纳成一类,即阻碍联通的坐标DP. 既然是阻碍联通,那么此类问题的通用思路是这样的: 首先将dp数组图形化. 一般用一个特定图形上的特定点来 ...

  10. mysql后台导入sql文件-设定字符集

    需求描述:有一个user_info.sql 的文件里面都是插入user_info表的insert语句数据,数据量500M,要求快速插入mysql的数据库中. 解决方法: 1.利用客户端工具加载文件插入 ...