Codeforces 909 A-F
CF909 题解
题目链接
题解
A
题目翻译:给定两个字符串,求字典序最小的“两字符串非空前缀拼接形成的字符串”。
算法标签:贪心
题目分析:
字典序最小,即从左往右依次比较字符,直到一方不剩字符或两字符不同。因此想到贪心。由于前缀非空,因此在前一字符串上不断输出,直到输出结束或字符大于后一字符串的第一个字符。
代码略。
B
题目翻译:
输入 \(n\),由此得到 \(\frac{n(n+1)}{2}\) 个线段。你可以将它们拼接在一起,但要注意不能改变它们的左右端点位置。求拼接形成的线段最小数量。下图为当 \(n=4\) 时的最优解。
算法标签:数学、构造、贪心
题目分析:本题有多种解题思路。
- 打标找规律(其一)
若将答案按照 \(n(0 \le n)\) 的大小排成一个数列,则该数列的前几项为:
0, 1, 2, 4, 6, 9, …
不难发现答案为 \(\lfloor \frac{n+1}{2} \rfloor \times \lceil \frac{n+1}{2} \rceil\)。直接做就做完了。
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
n++;
cout << floor(n / 2.0) * ceil(n / 2.0) << endl;
return 0;
}
- 打标找规律(其二)
不难发现答案有规律 \(f_i=2\times f_{i-1}-2\times f_{i-3}+f_{i-4}\)。直接做就做完了。
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n == 1) puts("1");
else if (n == 2) puts("2");
else if (n == 3) puts("4");
else if (n == 4) puts("6");
else {
int a = 1, b = 2, c = 4, d = 6, e;
n -= 4;
while (n--) {
e = 2 * d - 2 * b + a;
a = b;
b = c;
c = d;
d = e;
}
printf("%d\n", d);
}
return 0;
}
- 对规律进行证明
因为规律可能错误,为了避免罚时(CF 赛制)和挂分(OI 赛制),需要对规律进行证明。
以下内容翻译自官方题解:
考虑长度为 \(1\) 的段 \([i, i + 1]\)。显然,覆盖此段的所有段必须属于不同的层。为了覆盖它,线段的左端必须位于点 \(0, 1,…, i\)(共 \(n-i\) 种选择),而右端分别在点 \(i+1,i+2,…,n\)(共 \(n-i\) 种选择)。所以覆盖 \([i, i + 1]\) 的段数等于 \(m_i=(i + 1)(n - i)\)。在所有 \(i=0,…,n-1\) 中,\(m_i\) 的最大值给出了层数的下界。
由于该问题不需要显式构造,我们可以猜测这个界限是精确的。最大值 \(m_i\) 可以在 \(O(n)\) 内找到;或者,可以看出,当 \(n\) 为奇数时,最大值出现在中间段,而当 \(n\) 为偶数时,最大值出现在两个中间段之一。
所以答案是 \((\lfloor\frac{n}{2}\rfloor+1)\cdot\lceil\frac{n}{2}\rceil\)。
我们也可以通过一个明确的构造来证明这一点。将所有线段按照其左端点的非降序排列,然后再按照其右端点的升序排列。尝试贪心地为每个下一段找到一个位置:如果 \(i\) 是当前线段的左端点,且线段 \([i, i+1]\) 在某一层是空闲的,则将当前线段添加到该层;否则,用当前线段开始一个新的层。
是的,这就是个 \(O(1)\) 的问题!(滑稽)
C
题目翻译:
题目给定一段类 Python 代码(只有两种语句:
p(代表f(代表for)),要求计算出这段代码有多少种合法的缩进。答案对 \(10^9+7\) 取模。
算法标签:动态规划
题目分析:类 Python 语言的缩进规则如下:
- 第一条语句不加缩进
- 对于其他语句有:
- 若其为某条
for的循环体时,加该for语句缩进的下一级 - 否则不缩进
- 若其为某条
- 特别的,每条
for都必须有至少一条语句作为循环体
这是一个例子:
print
print
for
print
for
print
print
print
print
于是可以想到动态规划。设 \(dp_{i,j}\) 表示第 \(i\) 条语句缩进 \(j\) 级的方案数,\(s_i\) 表示第 \(i\) 条语句。
显然当 \(s_{i-1}=\text{"f"}\) 时,\(dp_{i,j}\) 只能从 \(dp_{i-1,j-1}\) 转移;而当 \(s_{i-1}=\text{"p"}\) 时,它可以从任意 \(dp_{i, k}(j \le k \le i)\) 处转移。因此可以维护后缀和加速。时间复杂度 \(O(n^2)\)。
#include <bits/stdc++.h>
using namespace std;
int dp[5010][5010], sum[5010], n, cnt = 0;
string s, lst;
const int mod = 1e9 + 7;
int main() {
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin >> n >> s;
lst = s;
dp[1][0] = 1;
for (int i = 2; i <= n; i++) {
cin >> s;
if (lst == "f") {
for (int j = 1; j <= i; j++) {
dp[i][j] = dp[i - 1][j - 1];
}
} else {
for (int j = i; j >= 0; j--) {
dp[i][j] = (dp[i][j + 1] + dp[i - 1][j]) % mod;
}
}
lst = s;
}
int ans = 0;
for (int i = 0; i <= n; i++) ans = (ans + dp[n][i]) % mod;
cout << ans << "\n";
return 0;
}
D
题目翻译:
给定一条直线上的一组点。每个点都有一个指定的颜色。对于点 \(a\),它的邻居是在它们和 \(a\) 之间没有其他点的点。每个点最多有两个邻居——一个在左边,一个在右边。
对这组点执行一系列操作。在一个操作中,你删除所有有至少一个不同颜色的相邻点的点。同时删除点,即首先决定要删除哪些点,然后删除它们。之后,您可以执行下一个操作等。如果操作不会删除任何点,则不能执行该操作。
您需要执行多少次操作,直到下一个操作没有任何要删除的点?
算法标签:优化暴力
题目分析:如果暴力删点,总复杂度 \(O(n^2)\) 无法接受。但我们不难发现字符串内最多只有 \(26\) 种字符,于是想到优化暴力。
考虑将字符相同的区间“缩点”。由于每次删除的是有一个不同颜色的相邻点的点,所以对于长度 \(\ge 2\) 的区间,每次操作会删除其最左侧和最右侧的点(如果其左、右存在相邻点)。因此,总复杂度会降到近似 \(O(n)\)。
注:下面的代码因为 CF 网络故障,暂时未确定是否能够通过本题。
#include <bits/stdc++.h>
using namespace std;
string s;
int a[1000010], cnt = 1;
char c[1000010];
int main() {
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin >> s;
a[1] = 1; c[1] = s[0];
for (int i = 1; i < s.size(); i++) {
if (s[i] == s[i - 1]) {
a[cnt]++;
} else {
a[cnt + 1] = 1;
c[cnt + 1] = s[i];
cnt++;
}
}
int ans = 0;
while (cnt > 1) {
for (int i = 1; i <= cnt; i++) {
if (i == 1 || i == cnt) a[i]--;
else a[i] -= min(2, a[i]); // 当区间内点数不足时全部删除
}
int tmp = 0;
for (int i = 1; i <= cnt; i++) { // 去除不存在的区间 && 合并区间
if (a[i] == 0) continue;
if (c[i] == c[tmp]) c[tmp] += c[i];
else {
tmp++;
c[tmp] = c[i];
a[tmp] = a[i]; // copy
}
}
ans++;
cnt = tmp;
}
cout << ans << '\n';
return 0;
}
E
题目翻译:
算法标签:
题目分析:
F
题目翻译:
算法标签:
题目分析:
Codeforces 909 A-F的更多相关文章
- Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)
Problem Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...
- Educational Codeforces Round 40 F. Runner's Problem
Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...
- codeforces Gym 100187F F - Doomsday 区间覆盖贪心
F. Doomsday Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100187/problem/F ...
- Codeforces gym 100685 F. Flood bfs
F. FloodTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100685/problem/F Desc ...
- Codeforces Gym 100513F F. Ilya Muromets 线段树
F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...
- Educational Codeforces Round 61 F 思维 + 区间dp
https://codeforces.com/contest/1132/problem/F 思维 + 区间dp 题意 给一个长度为n的字符串(<=500),每次选择消去字符,连续相同的字符可以同 ...
- Educational Codeforces Round 51 F. The Shortest Statement(lca+最短路)
https://codeforces.com/contest/1051/problem/F 题意 给一个带权联通无向图,n个点,m条边,q个询问,询问两点之间的最短路 其中 m-n<=20,1& ...
- Codeforces Gym 100513F F. Ilya Muromets 水题
F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...
- Educational Codeforces Round 12 F. Four Divisors 求小于x的素数个数(待解决)
F. Four Divisors 题目连接: http://www.codeforces.com/contest/665/problem/F Description If an integer a i ...
- [codeforces/edu5]总结(F)
链接:http://codeforces.com/contest/616 A题: 统一成1e6长度的字符串,右对齐比较字典序. B题: 求所有行的最小值,里面最大的那个.暴力. C题: 先用dfs给每 ...
随机推荐
- 【防忘笔记】Spring+Struts2古董框架学习
Spring+Struts2项目框架梳理 若基于Spring+Struts2的方式进行开发,前后端的交互逻辑会与boot系以及MCV的组织结构有所不同 这里是对于学习过程的一些记录 前置通用知识 St ...
- elementui 修改合计行样式
<style scoped> /deep/.el-table .el-table__footer-wrapper .cell { text-align: right } </styl ...
- 高维前缀和 (SOSDP)
算法介绍--高维前缀和 引入 我们都知道二维前缀和有这么一个容斥的写法: for(int i=1;i<=n;i++){ for(int j=1;j<=m;j++){ s[i][j]=s[i ...
- a web app for deep learning - deep-learning-training-gui
安装该项目 ENV: Win11 Anaconda 主要参考 https://www.tensorflow.org/install/pip 1. 安装 python 3.9, 在Anaconda 新建 ...
- 鸿蒙(Harmony) NEXT - AlphabetIndexer实现联系人字母索引
鸿蒙(Harmony) NEXT 9月份就要正式上架了,并且不会再兼容安卓平台,于是我也赶紧给App开发鸿蒙版本,接下来会写一系列的Harmony开发教程. 今天使用AlphabetIndexer实现 ...
- Qml 实现瀑布流布局
[写在前面] 最近在刷掘金的时候看到一篇关于瀑布流布局的文章,然鹅他们的实现都是前端的那套,就想着 Qml 有没有类似实现. 结果百度了一圈也没有( T_T Qml 凉了凉了 ),于是,我按照自己理解 ...
- DOM – Work with Document.styleSheets and JS/Scss Breakpoint Media Query
前言 为了方便管理, 我们会定义 CSS Variables, 类似于全局变量. 有时候做特效的时候还需要 JavaScript 配合, 这时就会希望 JavaScript 可以获取到 CSC Var ...
- IIS Reverse Proxy 反向代理
前言 反向代理是这样的: 2 台 web server, A server, B server A server 是 public 的, 有 domain, 有 SSL (作为 B server 的代 ...
- CF228E 题解
CF228E 题解 题目简述 给定一个 \(n\) 个点,\(m\) 条边的无向图,每条边都为 \(0\) 或 \(1\),可以进行若干次操作,与此点相连的所有点权值取反,求一种方案使得所有边都变为 ...
- APP专项测试之兼容性测试
1.APP 兼容性测试认识 随着 APP 应用范围越来越广,用户群体越来越大,终端设备的型号也越来越多,移动终端碎片化加剧,使得 APP 兼容性测试成为测试质量保障必须要考虑的环节. APP 兼容性测 ...
