2024/10/2 CSP-S模拟赛
A
一道映射(下文有可能会说成置换)好题,题面描述太恶心,纯纯傻逼阅读理解。
首先很容易发现后几种操作都是对数列的后两个数进行辗转相减法,所以如果一开始给的后两个数和当前数列的后两个数的\(gcd\)不相同,就不可能。
接着考虑,你至少要执行一次的第一个操作(题面规定也),我们从循环节的角度进行考虑,怎么计算呢?
首先说一下什么是循环节,看这个:

来自pz给的ppt,很好整,其实就是上下两个定义,回去我录个视频,方便理解。
那么你至少要搞一次第一次操作,其实就是把该数列置换后的结果变成平方。
那么如果存在一个完整的循环节(其实就是一个完整的序列)的平方是这个序列,那么答案其实就是成立的。
现在你考虑如何计算这个数列是否能开方,有一个关于置换的定理:
如果一个置换序列能被开平方,那么这个数列的循环节肯定不存在奇数个长度为偶数的循环节,那么其实就很好做了,只需要对当前序列疯狂的求出所有循环节,然后直接判断就ok了。
另外,要看好数据范围再memset!!!
贴一个yzh的复习笔记:

B
好题。
这题其实是原题,在大工VS辽实的T3里出现过,基本是一摸一样。
对于观看这个题解呢,我的理解是把两个结合起来观看,分别是 这个和这个,结合起来看的话无论是从感官还是从方便理解来看都很舒服。
好了,接下来我们说一下这个题的思路。
你考虑,你在一段长度为\(m\)的区间里至少要选两个,最终要求结果最小,所以一段长度为\(m\)要选两个。
我们钦定状态\(dp_{i,j}\)表示最后选的汤圆的下标为\(i\),倒数第二个选的是\(j\)
你考虑怎么转移这个东西,显然得到一段公式:
\]
那么你考虑这玩意怎么做优化,因为这个做法显然是\(O(n^3)\)的。
你考虑,对于\(dp_{i,j}\),他需要比较的是\(dp_{j,i-m+1}\to dp_{j,j-1}\);对于\(dp_{i+1,j}\),他需要比较的是\(dp_{j,i-m} \to dp_{j,j-1}\),欸,这个时候你会惊奇的发现,对于\(dp_{j,i-m+1} \to dp_{j,j-1}\)这一段,他的枚举是冗余的,这张图片会更好理解:

这就是优化的地方,你考虑,我记录一个\(res\),表示当前上端区间的最小值,而这段区间的最小值,其实就是\(min(res,dp_{j,i-m})\),那么就可以把枚举\(k\)这个步骤给省略了!
这个时候再明确一下枚举顺序就可以了!
你考虑,在求这个位置的最小值的时候,需要跟他前面的进行比较,所以,\(j\)需要从小到大进行枚举:for(int j = 1;j <= n;j++)
但是你考虑,对于枚举最小值的时候,他跟\(01\)背包的过程是类似的,如果你正着枚举的话,你有可能会重复,而且这玩意是一个类似滑动窗口的东西,所以你要倒着扫。
记得初始化并且取模!直接就滚动数组就可以解决这个题了。
D
先给几个前置知识:
- 快速计算斐波那契数列的通项公式:$$\sum_{i=1}^{n}F_i = F_{n+2}-1$$
接下来我们给出证明。
首先明确一个东西----数学归纳法:当一个等式在\(m\)下成立,推导过后\(m+1\)也成立,则该等式成立(注意,前提是在\(1\)的情况下他也成立)
那么就好整了,当\(n = 1\)时这个式子显然是成立的,\(2-1 = 1\),
那么引出有关\(m+1\)的等式:
\]
\(\;\;\;\;\;\;\;\)由结论:
\]
\(\;\;\;\;\;\;\;\)得到:
\sum_{i=1}^{m+1} &= \sum_{i=1}^{m}F_i+F_{m+1} \\ &= F_{m+2}+F_{m+1}-1\\
&=F_{m+3}-1
\end{aligned}
\]
\(\;\;\;\;\;\;\)则该式子在\(m+1\)与\(1\)下均成立,故此式子成立。
- 有关小球与盒子的公式:
\]
\(\;\;\;\;\;\;\)这个还是挺好理解的,前面那个是有\(n\)个不同小球放入\(m\)个不同盒子中,每个盒子可以为空。
\(\;\;\;\;\;\;\)后面那个\(S(n,i)\)就是斯特林数,他的意思就是从\(n\)个不同的小球放入\(m\)个相同的盒子,盒子不可以为空。那么意思就显然了
接下来我们把原来的式子推一下:
&\sum_{i=1}^{n}(\sum_{m=1}^{r}F_i)!\times i! \times \sum_{l=0}^{i}\sum_{j=0}^{\sum_{t=1}^{r}F_t} \frac{S(K,i-l)}{l!}
\frac{S(i,\sum_{w=1}^{r}F_w-j)}{j!}
\\
=&\sum_{i=1}^{n}L! \times i! \times \sum_{l=0}^{i}\sum_{j=0}^{L}\frac{S(K,i-l)}{l!}\frac{S(i,L-j)}{j!}
\\
=&\sum_{i=1}^{n}\sum_{l=0}^{i}S(K,i-l)\frac{i!}{l!}\sum_{j=0}^{L}S(i,L-j)\frac{L!}{j!}
\end{aligned}
\]
那么这个时候怎么算呢,你考虑,\(\sum_{l=0}^{i}\)时\(S(K,i-l)\frac{L!}{l!}\)与\(S(K,l)\frac{L!}{(i-l)!}\)的结果显然时相同的,\(\sum_{j=0}^{L}S(i,L-j)\frac{i!}{j!}与\sum_{j=0}^{L}S(i,j)\frac{i!}{(L-j)!}\)相同,所以原式可以变化为:
&\sum_{i=1}^{n}\sum_{l=0}^{i}S(K,i-l)\frac{i!}{l!}\sum_{j=0}^{L}S(i,L-j)\frac{L!}{j!}
\\
=&\sum_{i=1}^{n}\sum_{l=0}^{i}S(K,l)\frac{i!}{(i-l)!}\sum_{j=0}^{L}S(i,j)\frac{L!}{(L-j)!}
\end{aligned}
\]
这个时候你发现\(\frac{L!}{(i-l)!}\)和组合数是不是挺像的?
(组合数公式:\(C_{n}^{m} =\frac{n!}{m!(n-m)!}\))
是不是其实就是\(C_{i}^{l}\times l!\)?
另一个\(\frac{i!}{(L-j)!}\)同理。
故原式转换为:
&\sum_{i=1}^{n}\sum_{l=0}^{i}S(K,l)\frac{i!}{(i-l)!}\sum_{j=0}^{L}S(i,j)\frac{L!}{(L-j)!}
\\
=&\sum_{i=1}^{n}\sum_{l=0}^{i}S(K,l)C_{i}^{l}\times l!\sum_{j=0}^{L}S(i,j)C_{L}^{j}\times j!
\end{aligned}
\]
那么这个时候你和前面那个前置知识\(2\)对比一下,发现式子可以转换为:
\]
其中\(S(n,m)\)为斯特林数,\(L\)为\(F_{n+2}-1\)
至此,我们便可以得到了这个题的\(30pts\)做法,我已经尽力了。
2024/10/2 CSP-S模拟赛的更多相关文章
- 【2018.10.20】noip模拟赛Day3 飞行时间
今天模拟赛题目 纯考输入的傻逼题,用$scanf$用到思想僵化的我最终成功被$if$大法爆$0$了(这题只有一组$100$分数据). 输入后面那个$(+1/2)$很难$if$判断,所以我们要判两个字符 ...
- 【2018.10.18】noip模拟赛Day2 地球危机(2018年第九届蓝桥杯C/C++A组省赛 三体攻击)
题目描述 三体人将对地球发起攻击.为了抵御攻击,地球人派出了 $A × B × C$ 艘战舰,在太 空中排成一个 $A$ 层 $B$ 行 $C$ 列的立方体.其中,第 $i$ 层第 $j$ 行第 $k ...
- 2016 10 26考试 NOIP模拟赛 杂题
Time 7:50 AM -> 11:15 AM 感觉今天考完后,我的内心是崩溃的 试题 考试包 T1: 首先看起来是个贪心,然而,然而,看到那个100%数据为n <= 2000整个人就虚 ...
- 2018.8.10 提高B组模拟赛
T1 阶乘 Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits Goto ProblemSet Description 有n个正 ...
- 10.25最后的模拟赛DAY1 answer
QAQ太困了,大概说一下自己的思路: 其实这题很容易看错题目或是想错,就比如我个傻逼,一开始以为p+q一定等于n.... 咳咳...其实这题不用想太多,我们可以通过这n个字符串一个个假设正确或是不正确 ...
- 【2018.10.20】noip模拟赛Day3 二阶和
今年BJ省选某题的弱化版…… 这看起来就没那么难了,有几种方法维护,这里提两种. 第一种(傻逼的我写的) 维护 一维&二维前缀和. 对于一个长度为$m$的序列$b_1,b_2,...,b_m$ ...
- 【2018.10.15】noip模拟赛Day1
题面 wzj的题解 T1 随便搜 #include<bits/stdc++.h> #define ll long long using namespace std; inline int ...
- 10.30 NFLS-NOIP模拟赛 解题报告
总结:今天去了NOIP模拟赛,其实是几道USACO的经典的题目,第一题和最后一题都有思路,第二题是我一开始写了个spfa,写了一半中途发现应该是矩阵乘法,然后没做完,然后就没有然后了!第二题的暴力都没 ...
- EZ 2018 06 10 NOIP2018 模拟赛(十八)
好久没写blog&&比赛题解了,最近补一下 这次还是很狗的,T3想了很久最后竟然连并查集都忘写了,然后T2map莫名爆炸. Rating爆减......链接不解释 好了我们开始看题. ...
- 10.17 NOIP模拟赛
目录 2018.10.17 NOIP模拟赛 A 咒语curse B 神光light(二分 DP) C 迷宫maze(次短路) 考试代码 B 2018.10.17 NOIP模拟赛 时间:1h15min( ...
随机推荐
- 高级工程师面试大全- spring篇
1.spring是什么 Spring是一个轻量级的IoC和AOP容器框架.是为Java应用程序提供基础性服务的一套框架,目的是用于简化企业应用程序的开发,它使得开发者只需要关心业务需求.主要包括以下七 ...
- 9k star 监控系统,100% 国产,推荐了解
前言 监控系统的重要性不言而喻,国内用的最多的应该是 Zabbix 和 Prometheus,其优缺点: Zabbix 是资产管理式,监控数据存在数据库中,擅长设备监控,不擅长微服务和云原生环境的监控 ...
- 推荐7款美观且功能强大的WPF UI库
前言 经常看到有小伙伴在DotNetGuide技术社区交流群里提问:WPF有什么好用或者好看的UI组件库推荐的?,今天大姚给大家分享7款开源.美观.功能强大.简单易用的WPF UI组件库. WPF介绍 ...
- java_类方法&对象方法
int new; 类方法 不能写入和访问其中的对象属性 可以直接通过类调用 通过类调用类方法,没有具体的对象, 所以 不可以访问对象属性, 但是可以访问类属性 public static void d ...
- 简单理解.net 依赖注入的三种方式
前言 :.NET5.0 于2020年11月10日正式发布,它是3.1之后的 .NET Core 的下一个主要版本.微软将这个新版本命名为 .NET 5.0 而不是 .NET Core 4.0,其原因有 ...
- 英文短句“xxx for the rest of us”的意思
"xxx for the rest of us" 这个短语通常被理解为"为我们所有人"或"为我们剩下的人".为了更好地理解这个短语的意义,我 ...
- 【YashanDB知识库】yasdb jdbc驱动集成BeetISQL中间件,业务(java)报autoAssignKey failure异常
问题现象 BeetISQL中间件版本:2.13.8.RELEASE 客户在调用BeetISQL提供的api向yashandb的表中执行batch insert并将返回sequence设置到传入的jav ...
- 使用 Helm 在 Kubernetes 上安装 Consul
Consul Sync 部署 官方文档部署:https://developer.hashicorp.com/consul/docs/k8s/installation/install 部署版本 1.14 ...
- OpenAI GPT-4发布总结
OpenAI官方发布了GPT-4模型,GPT-4是一个大型多模态模型,支持输入文本+图片,输出还是文字形式,GPT-4比任何 GPT-3.5 模型都更强大,能够执行更复杂的任务,并针对聊天进行了优化. ...
- ASP.NET Core – Program.cs and Startup.cs 小笔记
前言 ASP.NET Core 6.0 以后, 默认模板去掉了 Program.cs 的 namespace, class 和 Startup.cs, 一开始看会有点懵. 这篇大概记入一下, prog ...