什么是NoSQL

NoSQL,指的是非关系型的数据库。NoSQL有时也称作Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称,它具有非关系型、分布式、不提供ACID的数据库设计模式等特征。

NoSQL用于超大规模数据的存储。(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。

SQL 和 NoSQL 的区别

SQL数据库适合那些需求确定和对数据完整性要去严格的项目。NoSQL数据库适用于那些对速度和可扩展性比较看重的那些不相关的,不确定和不断发展的需求。简单来说就是:

  • SQL是精确的。它最适合于具有精确标准的定义明确的项目。典型的使用场景是在线商店和银行系统。
  • NoSQL是多变的。它最适合于具有不确定需求的数据。典型的使用场景是社交网络,客户管理和网络分析系统。

SQL和Nosql的选型和比较

1.关系型数据库和非关系型数据库

SQL (Structured Query Language) 数据库,指关系型数据库。主要代表:SQL Server,Oracle,MySQL等。

NoSQL(Not Only SQL)泛指非关系型数据库,主要代表:MongoDB,Redis等。

2.关系型数据库适合存储结构化数据

如用户的帐号、地址等:

1)这些数据通常需要做结构化查询,比如join,这时候,关系型数据库就要胜出一筹

2)这些数据的规模、增长的速度通常是可以预期的

3)保证数据的事务性、一致性要求。

3.NoSQL适合存储非结构化数据

如发微博、文章、评论:

1)这些数据通常用于模糊处理,如全文搜索、机器学习

2)这些数据是海量的,而且增长的速度是难以预期的,

3)根据数据的特点,NoSQL数据库通常具有无限(至少接近)伸缩性

4)按key获取数据效率很高,但是对join或其他结构化查询的支持就比较差

目前许多大型互联网项目都会选用MySQL(或任何关系型数据库) + NoSQL的组合方案。

NoSQL的常见4大类型和比较

有四种常见的 NoSQL 数据库类型:列式、文档、图形和内存键值。

1.列式数据

顾名思义,是按列存储数据的。最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,对针对某一列或者某几列的查询有非常大的IO优势。

1)对应的nosql: HBase,BigTable等。

2)典型应用场景:按列存储,针对某一列或者某几列的查询有非常大的IO优势。

3)优点:查找速度快,可扩展性强,更容易进行分布式扩展。

4)缺点:功能相对局限。

2.文档数据库

旨在将半结构化数据存储为文档,通常采用 JSON 或 XML 格式。与传统关系数据库不同的是,每个 NoSQL 文档的架构是不同的,可让您更加灵活地整理和存储应用程序数据并减少可选值所需的存储。

1)对应的nosql:CouchDB, MongoDb

2)典型应用场景:存储类似JSON格式的内容,可对某些字段建立索引功能,是最像关系型的数据库。

3)优点:数据结构要求不严格,表结构可变,不需要像关系型数据库一样需要预先定义表结构。

4)缺点:查询性能不高,而且缺乏统一的查询语法。

3.图形数据库

可存储顶点以及称为边缘的直接链路。图形数据库可以在 SQL 和 NoSQL 数据库上构建。顶点和边缘可以拥有各自的相关属性。

1)数据模型:图结构

2)典型应用场景:社交网络,推荐系统等。专注于构建关系图谱,善于处理大量复杂、互连接、低结构化的数据,数据往往变化迅速,且查询频繁。

3)优点:利用图结构相关算法。比如最短路径寻址,N度关系查找等。

4)缺点:很多时候需要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群方案。

4.内存键值存储

可以通过key快速查询到其value。一般来说,存储不管value的格式,照单全收,是针对读取密集型应用程序工作负载(例如社交网络、游戏、媒体共享和 Q&A 门户)。内存缓存可将重要数据存储在内存中以实现低延迟访问,从而提高应用程序性能。

1)对应的nosql:Redis,Memcached等

2)典型应用场景:内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等等。

3)优点:查找速度快。

4)缺点:数据无结构化,通常只被当作字符串或者二进制数据。

---------------------------------------------------

NoSQL-理解

 

随着互联网web2.0网站的兴起,非关系型的数据库成了一个极其热门的新领域,非关系数据库产品的发展非常迅速。而传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,例如:

1、High performance - 对数据库高并发读写的需求
web2.0网站要根据用户个性化信息来实时生成动态页面和提供动态信息,所以基本上无法使用动态页面静态化技术,因此数据库并发负载非常高,往往要达到每秒上万次读写请求。关系数据库应付上万次SQL查询还勉强顶得住,但是应付上万次SQL写数据请求,硬盘IO就已经无法承受了。其实对于普通的BBS网站,往往也存在对高并发写请求的需求。
2、Huge Storage - 对海量数据的高效率存储和访问的需求
对于大型的SNS网站,每天用户产生海量的用户动态,以国外的Friendfeed为例,一个月就达到了2.5亿条用户动态,对于关系数据库来说,在一张2.5亿条记录的表里面进行SQL查询,效率是极其低下乃至不可忍受的。再例如大型web网站的用户登录系统,
3、High Scalability && High Availability- 对数据库的高可扩展性和高可用性的需求
在基于web的架构当中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,你的数据库却没有办法像web server和app server那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移,为什么数据库不能通过不断的添加服务器节点来实现扩展呢?
在上面提到的“三高”需求面前,关系数据库遇到了难以克服的障碍,而对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地,例如:
1、数据库事务一致性需求
很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低,有些场合对写一致性要求也不高。因此数据库事务管理成了数据库高负载下一个沉重的负担。
2、数据库的写实时性和读实时性需求
对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的。并不要求这么高的实时性。
3、对复杂的SQL查询,特别是多表关联查询的需求
任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的复杂SQL报表查询,特别是SNS类型的网站,从需求以及产品设计角度,就避免了这种情况的产生。往往更多的只是单表的主键查询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。
因此,关系数据库在这些越来越多的应用场景下显得不那么合适了,为了解决这类问题的非关系数据库应运而生。
NoSQL 是非关系型数据存储的广义定义。它打破了长久以来关系型数据库与ACID理论大一统的局面。NoSQL 数据存储不需要固定的表结构,通常也不存在连接操作。在大数据存取上具备关系型数据库无法比拟的性能优势。该术语在 2009 年初得到了广泛认同。
当今的应用体系结构需要数据存储在横向伸缩性上能够满足需求。而 NoSQL 存储就是为了实现这个需求。Google 的BigTable与Amazon的Dynamo是非常成功的商业 NoSQL 实现。一些开源的 NoSQL 体系,如Facebook 的Cassandra, Apache 的HBase,也得到了广泛认同。从这些NoSQL项目的名字上看不出什么相同之处:Hadoop、Voldemort、Dynomite,还有其它很多。
NoSQL与关系型数据库设计理念比较
关系型数据库中的表都是存储一些格式化的数据结构,每个元组字段的组成都一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于表与表之间进行连接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。而非关系型数据库以键值对存储,它的结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。

编辑本段特点

它们可以处理超大量的数据
它们运行在便宜的PC服务器集群上
PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。
它们击碎了性能瓶颈
NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。
“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。
没有过多的操作
虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。
Bootstrap支持
因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。

编辑本段优点

易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

NoSQL 数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用

NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

编辑本段缺点

但是一些人承认,没有正式的官方支持,万一出了差错会是可怕的,至少很多管理人员是这样看。
“我们确实需要做一些说服工作,但基本在他们看到我们的第一个原型运行良好之后,我们就能够说服他们,这是条正确的道路。”
此外,nosql并未形成一定标准,各种产品层出不穷,内部混乱,各种项目还需时间来检验

编辑本段NoSQL开源软件

Membase
Membase 是 NoSQL 家族的一个新的重量级的成员。Membase是开源项目,源代码采用了Apache2.0的使用许可。该项目托管在GitHub.Source tarballs上,可以下载beta版本的Linux二进制包。该产品主要是由North Scale的memcached核心团队成员开发完成,其中还包括Zynga和NHN这两个主要贡献者的工程师,这两个组织都是很大的在线游戏和社区网络空间的供应商。
Membase容易安装、操作,可以从单节点方便的扩展到集群,而且为memcached(有线协议的兼容性)实现了即插即用功能,在应用方面为开 发者和经营者提供了一个比较低的门槛。做为缓存解决方案,Memcached已经在不同类型的领域(特别是大容量的Web应用)有了广泛的使用,其中 Memcached的部分基础代码被直接应用到了Membase服务器的前端。
通过兼容多种编程语言和框架,Membase具备了很好的复用性。在安装和配置方面,Membase提供了有效的图形化界面和编程接口,包括可配置 的告警信息。
Membase的目标是提供对外的线性扩展能力,包括为了增加集群容量,可以针对统一的节点进行复制。 另外,对存储的数据进行再分配仍然是必要的。
这方面的一个有趣的特性是NoSQL解决方案所承诺的可预测的性能,类准确性的延迟和吞吐量。通过如下方式可以获得上面提到的特性:
◆ 自动将在线数据迁移到低延迟的存储介质的技术(内存,固态硬盘,磁盘)
◆ 可选的写操作一一异步,同步(基于复制,持久化)
◆ 反向通道再平衡[未来考虑支持]
◆ 多线程低锁争用
◆ 尽可能使用异步处理
◆ 自动实现重复数据删除
◆ 动态再平衡现有集群
◆ 通过把数据复制到多个集群单元和支持快速失败转移来提供系统的高可用性。
MongoDB
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。它的特点是高性能、易部署、易使用,存储数据非常方便。
主要功能特性
◆ 面向集合存储,易存储对象类型的数据
“面向集合”(Collenction-Oriented),意思是数据被分组存储在数据集中,被称为一个集合(Collenction)。每个 集合在数据库中都有一个唯一的标识名,并且可以包含无限数目的文档。集合的概念类似关系型数据库(RDBMS)里的表(table),不同的是它不需要定 义任何模式(schema)。
◆ 模式自由
模式自由(schema-free),意味着对于存储在mongodb数据库中的文件,我们不需要知道它的任何结构定义。如果需要的话,你完全可以把不同结构的文件存储在同一个数据库里。
◆支持动态查询
◆支持完全索引,包含内部对象
◆支持查询
◆支持复制和故障恢复
◆使用高效的二进制数据存储,包括大型对象(如视频等)
◆自动处理碎片,以支持云计算层次的扩展性
◆支持RUBY,PYTHON,JAVA,C++,PHP等多种语言
◆文件存储格式为BSON(一种JSON的扩展)
BSON(Binary Serialized document Format)存储形式是指:存储在集合中的文档,被存储为键-值对的形式。键用于唯一标识一个文档,为字符串类型,而值则可以是各中复杂的文件类型。
◆可通过网络访问
MongoDB服务端可运行在Linux、Windows或OS X平台,支持32位和64位应用,默认端口为27017。推荐运行在64位平台,因为MongoDB在32位模式运行时支持的最大文件尺寸为2GB。
MongoDB把数据存储在文件中(默认路径为:/data/db),为提高效率使用内存映射文件进行管理。
Hypertable
Hypertable是一个开源、高性能、可伸缩的数据库,它采用与Google的Bigtable相似的模型。在 过去数年中,Google为在PC集群 上运行的可伸缩计算基础设施设计建造了三个关键部分。第一个关键的基础设施是Google File System(GFS),这是一个高可用的文件系统,提供了一个全局的命名空间。它通过跨机器(和跨机架)的文件数据复制来达到高可用性,并因此免受传统 文件存储系统无法避免的许多失败的影响,比如电源、内存和网络端口等失败。第二个基础设施是名为Map-Reduce的计算框架,它与GFS紧密协作,帮 助处理收集到的海量数据。第三个基础设施是Bigtable,它是传统数据库的替代。Bigtable让你可以通过一些主键来组织海量数据,并实现高效的 查询。Hypertable是Bigtable的一个开源实现,并且根据我们的想法进行了一些改进。
Apache Cassandra
Apache Cassandra是一套开源分布式Key-Value存储系统。它最初由Facebook开发,用于储存特别大的数据。Facebook在使用此系统。
主要特性
◆ 分布式
◆ 基于column的结构化
◆ 高伸展性
Cassandra的主要特点就是它不是一个数据库,而是由一堆数据库节点共同构成的一个分布式网络服务,对Cassandra 的一个写操作,会被复制到其他节点上去,对Cassandra的读操作,也会被路由到某个节点上面去读取。对于一个Cassandra群集来说,扩展性能 是比较简单的事情,只管在群集里面添加节点就可以了。
Cassandra是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 储系统)更丰富,但支持度却不如文档存储MongoDB(介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富,最像关系数据库 的。支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。)Cassandra最初由Facebook开发,后转 变成了开源项目。它是一个网络社交云计算方面理想的数据库。以Amazon专有的完全分布式的Dynamo为基础,结合了Google BigTable基于列族(Column Family)的数据模型。P2P去中心化的存储。很多方面都可以称之为Dynamo 2.0。
CouchDB
所用语言: Erlang
特点:DB一致性,易于使用
使用许可: Apache
协议: HTTP/REST
双向数据复制,持续进行或临时处理,处理时带冲突检查,因此,采用的是master-master复制
MVCC – 写操作不阻塞读操作
可保存文件之前的版本
Crash-only(可靠的)设计
需要不时地进行数据压缩
视图:嵌入式 映射/减少
格式化视图:列表显示
支持进行服务器端文档验证
支持认证
根据变化实时更新
支持附件处理
因此, CouchApps(独立的 js应用程序)
需要 jQuery程序库
最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。
例如:CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。
和其他数据库比较,其突出特点是:
◆ 模式灵活 :使用Cassandra,像文档存储,你不必提前解决记录中的字段。你可以在系统运行时随意的添加或移除字段。这是一个惊人的效率提升,特别是在大型部 署上。
◆ 真正的可扩展性 :Cassandra是纯粹意义上的水平扩展。为给集群添加更多容量,可以指向另一台电脑。你不必重启任何进程,改变应用查询,或手动迁移任何数据。
◆ 多数据中心识别 :你可以调整你的节点布局来避免某一个数据中心起火,一个备用的数据中心将至少有每条记录的完全复制。
◆ 范围查询 :如果你不喜欢全部的键值查询,则可以设置键的范围来查询。
◆ 列表数据结构 :在混合模式可以将超级列添加到5维。对于每个用户的索引,这是非常方便的。
◆ 分布式写操作 :有可以在任何地方任何时间集中读或写任何数据。并且不会有任何单点失败。

NoSQL和SQL的区别、使用场景与选型比较的更多相关文章

  1. 为什么使用Nosql:Nosql和SQL的区别

    1.概念: SQL(Structured Query Language)数据库,指关系型数据库.主要代表:SQL Server.Oracle.MySQL.PostgreSQL. NoSQL(Not O ...

  2. MongoDB 1: NoSQL 和 SQL的区别

    导读:本篇博客,主要是结合自己在项目中的使用,简单的阐述一下NoSQL和SQL的区别.那么,根据自己的应用,NoSQL这边,选择的是MongoDB(Redis虽然也是,但属于内存存储,这里不予说明). ...

  3. 【转】Redis学习---NoSQL和SQL的区别及使用场景

    什么是NoSQL NoSQL,指的是非关系型的数据库.NoSQL有时也称作Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称,它具有非关系型.分布式.不提供ACID的数 ...

  4. 关于NoSQL与SQL的区别

    简单说来:sql是关系型数据库的结构化查询语言,而nosql,一般代指菲关系型数据库,sql语句就不能用来,不过有些有leisql的查询语言,且nosql数据库没有统一的查询语言. 相关参考文章阅读: ...

  5. 关系型数据库管理系统(RDBMS)与非关系型数据库(NoSQL)之间的区别

    简介 关系型数据库管理系统(RDBMS)是建立在关系模型基础上的数据库,主要代表有:Microsoft SQL Server,Oracle,MySQL(开源). 非关系型数据库(NoSQL),主要代表 ...

  6. 5G时代,为什么NoSQL和SQL存在短板?

    01 介绍 当今的通信服务提供商(CSP)需要能够在处理海量复杂的数据的同时,不会下降或者减慢网路响应速度和可靠性.5G时代,设备和用户数量呈指数级增长,这对业务支持服务(BSS)提出了新需求,也成为 ...

  7. HiveQL(HiveSQL)跟普通SQL最大区别一直使用PIG,而今也需要兼顾HIVE

    HiveQL(Hive SQL)跟普通SQL最大区别 一直使用PIG,而今也需要兼顾HIVE.网上搜了点资料,感觉挺有用,这里翻译过来.翻译估计不太准确,待自己熟悉HIVE后再慢慢总结. * No t ...

  8. pl/sql和sql的区别

    源地址:https://zhidao.baidu.com/question/187511430.html 1 sql(数据定义语言) 和PL/Sql的区别:答:SQL是结构化查询语言,比较接近自然语言 ...

  9. My SQL 和SQL Server区别

    MySQL 与SQL Server区别 今天了解了二者区别,整理网上查阅资料,总结列举如下: MSSQL == SQL server 是sybase与微软合作时期的产物. 对于程序开发人员而言,目前使 ...

  10. java.util.Date、java.sql.Date、java.sql.Time、java.sql.Timestamp区别和联系

    java.util.Date.java.sql.Date.java.sql.Time.java.sql.Timestamp区别和联系 栏目:Java基础 作者:admin 日期:2015-04-19  ...

随机推荐

  1. TextIn ParseX文档解析SDK工具新增Java版本

    TextIn ParseX通用文档解析是一款大模型友好的解析工具,支持将pdf文档.jpg.img图像等文件快速转换为markdown格式,支持各类表格.公式解析,帮助大语言模型的数据清洗和文档问答任 ...

  2. AI游戏外挂:强化学习算法用于棋牌类游戏的最优出牌策略 —— 如何在“斗地主”中使用AI技术获得最高胜率

    相关: https://zh.wikipedia.org/wiki/十三張 去年原打算接的一个小项目,不过后来没有搞下去,这里只记录一下. 这个项目的主要需要完成的一个功能就是图像识别,识别屏幕上的牌 ...

  3. 4.4 Linux解压.zip格式的文件(unzip命令)

    unzip 命令可以查看和解压缩 zip 文件.该命令的基本格式如下: [root@localhost ~]# unzip [选项] 压缩包名 此命令常用的选项以及各自的含义如表 1 所示. 选项 含 ...

  4. MySQL无开通SQL全审计下的故障分析方法

    几年前MySQL数据库出现突然的从库延迟故障和CPU爆高时,如何排查具体原因,可能说已在腾讯云的MySQL库里开启了SQL全审计,记录了全部执行的SQL,再通过下面的方法就可以很容易找到原因: 1,实 ...

  5. ARC143D Bridges

    ARC143D Bridges 巧妙的图论题. 思路 分析题目,发现很像拆点. 由于拆点要设置出入点,这里我们也把 \(a_i\) 设成入点,把 \(a_i+n\) 设成出点,再次分析问题. 考虑我们 ...

  6. Java通用分页

    一. 要分页我们必须要有数据库,所以我们先准备下数据库,其数据库脚步如下: --以下是创建数据库和数据库表以及向数据库插入数据  use master   Go   if exists(select ...

  7. AmplifyImpostors源码阅读

    首先看一下点击Bake按钮后的执行流程: 1.AmplifyImpostorInspector部分 首先点击按钮设置了bakeTexture = true if( GUILayout.Button( ...

  8. 如何使用blender生成城市群

    在我们做数字孪生相关的项目的时候,会需要生成一些城市的模型,这时候我们可以使用 blender 来生成一些城市的模型. 我们,先来看一下效果. 安装 blender blender 是一个开源的 3D ...

  9. 通用的定时任务工具 schedule-server

    背景: 我曾经在一个自动化测试平台中集成定时任务,基于 APScheduler 库花了好长时间解决重复执行的问题.定时任务集成在服务中也让服务变得复杂.最后,我们选择了公司其他团队go语言开发的一个定 ...

  10. 【COS 加码福利】COS 用户实践有奖征文,等你来投稿!

    COS用户实践征文活动火热进行中,本次征集主题为:如何在生态场景下使用 COS? 优质文章将有机会被编入腾讯云官方文档库,供广大用户学习参考.更有多重好礼等你来拿,速来围观投稿吧! 投稿说明: 1.投 ...