约数

一.概念

约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。

二.性质

1.整数唯一分解

1)定义

  对于任意一个正整数N,都有 N=p1c1*p2c2...pmcm,其中p为质数。

2)正约数集合

   ={p1b1*p2b2*...pmbm|0<=bi<=ci}

   3)正约数的和

   f(n)=(p1^0+p1^1+p1^2+…p1^a1)(p2^0+p2^1+p2^2+…p2^a2)…(pk^0+pk^1+pk^2+…pk^ak)

   4)正约数的个数

   =(c1+1)(c2+1)...(cm+1)

三.算法

  1.正约数集合

    1)试除法。一个一个试看能否被整除。推论:N的约数个数最多为2√N个

  2.1~N中所有数字的正约数

    1)试除

    2)基本推论:i一定是i的倍数的约数

for(int i=;i<=n;++i){
for(int j=;j<=n/i;++j){
fac[i*j].push_back(i);
}
}

     时间复杂度NlnN

    3)例题1 反质数 题解

     例题2 余数之和 题解

欧拉函数

一.概念

  对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。此函数以其首名研究者欧拉命名(Euler's totient function)

二.性质

  1)求欧拉函数   

    (其中p1, p2……pn为x的所有质因数,x是不为0的整数)

  2)推导欧拉函数

    对于素数p

    当p|n时 φ(p*n)=φ(n)*p

    否则 φ(p*n)=φ(n)*(p-1)

  3)φ(p)=p-1 p为素数

[学习笔记]约数&欧拉函数的更多相关文章

  1. POJ 2480 (约数+欧拉函数)

    题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...

  2. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  3. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  4. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  5. 五校联考 running (欧拉函数)

    题面 \(solution:\) 讲真吧,这道题真的出得,嗯,太恐怖了.考场上这道题真的把我看懵了,这道题以前是见过的,但欧拉函数?我学过吗?一道容斥都要超时的题目,我都要为我自己点根香了,拿着gcd ...

  6. POJ_2478 Farey Sequence 【欧拉函数+简单递推】

    一.题目 The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbe ...

  7. (转载)O(N)的素数筛选法和欧拉函数

    转自:http://blog.csdn.net/dream_you_to_life/article/details/43883367 作者:Sky丶Memory 1.一个数是否为质数的判定. 质数,只 ...

  8. [组合数学] 圆排列和欧拉函数为啥有关系:都是polya定理的锅

    本文是一个笨比学习组合数学的学习笔记,因为是笨比,所以写的应该算是很通俗易懂了. 首先,我们考虑这么一个问题:你有无穷多的\(p\)种颜色的珠子,现在你想要的把他们中的\(n\)个以圆形的形状等间距的 ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

随机推荐

  1. python3.7 pip升级或安装,拒绝访问 解决方案

  2. 深度学习-LSTM与GRU

    http://www.sohu.com/a/259957763_610300此篇文章绕开了数学公式,对LSTM与GRU采用图文并茂的方式进行说明,尤其是里面的动图,让人一目了然.https://zyb ...

  3. SpringBoot项目启动不走内嵌容器

    一.问题 springboot项目java -jar启动不走内嵌容器,如下图,可以看到是直接走系统环境变量里配置的tomcat容器了 二.分析 我的pom.xml文件关键依赖: <depende ...

  4. mybatis 多个中间表查询映射

    最近项目用到中间表,则遇到如何联查映射的问题,之前一直都是一个表头,多个明细或者一对一这样的关系,没遇到这样的问题,所以趁机找了下资料解决了这个问题. 表结构设计如下: 主表: CREATE TABL ...

  5. YARN-HA高可用集群搭建

    YARN-HA配置 1. YARN-HA工作机制 1.1 官方文档:http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/ ...

  6. ByteBuf源码

    ByteBuf是顶层的抽象类,定义了用于传输数据的ByteBuf需要的方法和属性. AbstractByteBuf 直接继承ByteBuf,一些公共属性和方法的公共逻辑会在这里定义.例如虽然不同性质的 ...

  7. HTTPDNS

    传统 DNS 缺点 1.域名缓存问题     它可以在本地做一个缓存,也就是说,不是每一个请求,它都会去访问权威 DNS 服务器,而是访问过一次就把结果缓存到自己本地,当其他人来问的时候,直接就返回这 ...

  8. 【洛谷 P2633】 Count on a tree(主席树,树上差分)

    题目链接 思维难度0 实现难度7 建出主席树后用两点的状态减去lca和lca父亲的状态,然后在新树上跑第\(k\)小 #include <cstdio> #include <cstr ...

  9. 亲密字符串之Javascript解法

    本题为leetcode第859题,原题链接在此:https://leetcode-cn.com/problems/buddy-strings/submissions/ 给定两个由小写字母构成的字符串  ...

  10. 第五周(web,machine learning笔记)

    2019/11/2 1.    表现层状态转换(REST, representational state transfer.)一种万维网软件架构风格,目的是便于不同软件/程序在网络(例如互联网)中互相 ...