目标检测算法之Fast R-CNN和Faster R-CNN原理
一、Fast R-CNN原理
在SPPNet中,实际上特征提取和区域分类两个步骤还是分离的。只是使用ROI池化层提取了每个区域的特征,在对这些区域分类时,还是使用传统的SVM作为分类器。Fast R-CNN相比SPPNet更进一步,不再使用SVM作为分类器,而是使用神经网络进行分类,这样就可以同时训练特征提取网络和分类网络,从而取得比SPPNet更高的准确度。Fast R-CNN的网络结构如下图所示

对于原始图片中的候选框区域,和SPPNet中的做法一样,都是将它映射到卷积特征的对应区域,即上图中的ROI projection,然后使用ROI池化层对该区域提取特征。在这之后,SPPNet是使用SVM对特征进行分类,而Fast R-CNN则是直接使用全连接层。全连接层有两个输出,一个输出负责分类,即上图中的softmax,另一个输出负责框回归,即上图中的bbox regressor。
先说分类,假设要在图像上检测K类物体,那么最终的输出应该是K+1个数,每个数都代表该区域为某个类别的概率。之所以是K+1个输出而不是K个输出,是因为还需要一类“背景类”,针对该区域无目标物体的情况。
再说框回归,框回归实际上要做的是对原始的检测框进行某种程度的“校准”。因为使用Selective Search获得的框有时存在一定偏差。设通过Selective Search得到的框的四个参数为(x,y,w,h),其中(x,y)表示框左上角的位置,而(w,h)表示框的宽度和高度。而真正的框的位置用(x',y',w',h')表示,框回归就是要学习参数[(x'-x)/w,(y'-y)/h,ln(w'/w),ln(h'/h)]其中(x'-x)/w,(y'-y)/h两个数表示与尺度无关的平移量,而ln(w'/w), ln(h'/h)两个数表示的是和尺度无关的缩放量。
Fast R-CNN 与SPPNet最大的区别就在于,Fast R-CNN不再使用SVM进行分类,而是使用一个网络同时完成了提取特征,判别类别和框回归三项任务。
二、Faster R-CNN原理
Fast R-CNN看似很完美了,但在Fast R-CNN中还存在着一个有点尴尬的问题:它需要先使用Selective Search提取框,这个方法比较慢,同时,检测一张图片,大部分时间不是花在计算神经网络分类上,而是花在Selective Search提取框上!在Fast R-CNN的升级版Faster R-CNN中,用RPN网络(Region Proposal Network)取代了Selective Search,不仅速度得到大大提高,而且还获得了更加精确的结果。
RPN网络的结构如下图所示

RPN还是需要先使用一个CNN网络对原始图片提取特征。为了方便读者理解,不妨设这个前置的CNN提取的特征为51x39x256,即高为51、宽为39、通道数为256。对这个卷积特征再进行一次卷积计算,保持宽、高、通道不变,再次得到一个51x39x256的特征。为了方便叙述,先来定义一个“位置”的概念:对于一个51x39x256的卷积特征,称它一共有51x39个“位置”。让新的卷积特征的每一个“位置”都“负责”原图中对应位置9种尺寸框的检测,检测的目标是判断框中是否存在这样一个物体,因此共有51x39x9个“框”。在Faster R-CNN的原论文中,将这些框都统一称为“anchor”。
anchor的9种尺寸如下图所示,它们面积分别是1282,2562,5122。每个面积又分为3种长宽比,分别2:1、1:2、1:1。anchor的尺寸实际是属于可调的参数,不同任务可以选择不同的尺寸。

对于这51x39个位置和51x39x9个anchor,下面这张图展示了接下来每个位置的计算步骤。设k为单个位置对应的anchor的个数,此时k=9。首先使用一个3x3的滑动窗口,将每个位置转换为一个统一的256维的特征,这个特征对应了两部分的输出。一部分表示该位置的anchor为物体的概率,这部分的总输出长度为2xk(一个anchor对应两个输出:是物体的概率+不是物体的概率)。另一部分为框回归,框回归的含义与Fast R-CNN中一样,一个anchor对应4个框回归参数,因此框回归部分的总输出的长度为4xk。

Faster R-CNN使用RPN生成候选框后,剩下的网络结构和Fast R-CNN中的结构一模一样。在训练过程中,需要训练两个网络,一个是RPN网络,一个是在得到框之后使用的分类网络。通常的做法是交替训练,即在一个batch内,先训练RPN网络,再训练分类网络一次。
R-CNN、Fast R-CNN、Faster R-CNN的对比如下表所示

从R-CNN,到Fast R-CNN,再到Faster R-CNN,不仅检测速度越来越快,而且检测的精确度也在不断提升。在出现R-CNN方法前,VOC2007数据集上传统方法所能达到的最高平均精确度(mAP)为40%左右,R-CNN将该值提高到了58.5%,Fast R-CNN在VOC2007上的平均准确度为70%,Faster R-CNN又将该值提高到了78.8%。这几种方法既一脉相承,又不断改进,值得仔细研究。
目标检测算法之Fast R-CNN和Faster R-CNN原理的更多相关文章
- (四)目标检测算法之Fast R-CNN
系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...
- 第三十节,目标检测算法之Fast R-CNN算法详解
Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2 ...
- 目标检测算法之Fast R-CNN算法详解
在介绍Fast R-CNN之前我们先介绍一下SPP Net 一.SPP Net SPP:Spatial Pyramid Pooling(空间金字塔池化) 众所周知,CNN一般都含有卷积部分和全连接部分 ...
- (五)目标检测算法之Faster R-CNN
系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...
- (六)目标检测算法之YOLO
系列文章链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...
- (七)目标检测算法之SSD
系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...
- 深度学习笔记之目标检测算法系列(包括RCNN、Fast RCNN、Faster RCNN和SSD)
不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. • RCNN RCN ...
- 基于候选区域的深度学习目标检测算法R-CNN,Fast R-CNN,Faster R-CNN
参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-C ...
- 目标检测算法的总结(R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD、FNP、ALEXnet、RetianNet、VGG Net-16)
目标检测解决的是计算机视觉任务的基本问题:即What objects are where?图像中有什么目标,在哪里?这意味着,我们不仅要用算法判断图片中是不是要检测的目标, 还要在图片中标记出它的位置 ...
随机推荐
- Qt发送邮件
首先下载支持库 https://download.csdn.net/download/zhangxuechao_/10598108 #ifndef MAIL_H #define MAIL_H #inc ...
- C++智能指针解析
前言 在C++程序中,内存分为三种静态内存.栈内存.堆内存.其中静态内存和栈内存由系统进行维护,而堆内存则是由程序员自己进行维护,也就是我们在new和delete对象时,这些对象存放的区域.任何有C+ ...
- ucoreOS_lab3 实验报告
所有的实验报告将会在 Github 同步更新,更多内容请移步至Github:https://github.com/AngelKitty/review_the_national_post-graduat ...
- apk分析 1
配置抓包工具 关闭捕获主机通讯关闭 配置: 在手机端进行配置 进入wifi设置,长按网络高级选项->手动设置代理 测试是否设置成功,手机上随便开应用看抓包器是否有反应 打开抓包目标apk(恋恋, ...
- python中杀死线程
有时候有这样的需要,在某种情况下,需要在主线程中杀死之前创建的某个线程,可以使用下面的方法,通过调用python内置API,在线程中抛出异常,使线程退出. import threading impor ...
- [PHP] 最简单的权限控制设计
假设url部分我们只有action和method , 某个控制器下的某个方法 , 比如:log/loginlog 查看日志下的登陆日志, action就是log , method就是loginlo ...
- Apache:系统找不到指定的文件: No installed ConfigArgs for the service "Apache2"
解决方法: 将以下内容保存成FixApacheError.reg文件(其中红色粗体Apache2改成报错的系统服务名称,如"RTX_HTTPServer"),导入系统注册表 Fix ...
- 经典的卷积神经网络及其Pytorch代码实现
1.LeNet LeNet是指LeNet-5,它是第一个成功应用于数字识别的卷积神经网络.在MNIST数据集上,可以达到99.2%的准确率.LeNet-5模型总共有7层,包括两个卷积层,两个池化层,两 ...
- 多线程(五)多线程同步_Event事件
事件和互斥体同样属于内核同步对象,它和互斥体以及临界区在功能上有以下区别 前面的互斥体和临界区主要作用在于确保控制多个线程之间对共享资源访问,保证共享资源的完整性 事件主要作用是通知其它线程一个操作己 ...
- Python运维中20个常用的库和模块
1.psutil是一个跨平台库(https://github.com/giampaolo/psutil) 能够实现获取系统运行的进程和系统利用率(内存,CPU,磁盘,网络等),主要用于系统监控,分析和 ...