模板 - 数据结构 - 线段树/SegmentTree
维护区间的线段树
线段树主要就是在在PushUp和Query的时候注意怎么合并左右区间的信息就可以了。对于延迟标记的互相影响完全就是自己跟自己过不去,假如有多种延迟标记的话不妨在访问到一个区间时全部下推(只需要注意叶子层是不能下推的),从其他部分把常数补回来就可以了。
例1 维护加法和(修改:单点加值 询问:区间加法和)
struct SegmentTree {
#define ls (o<<1)
#define rs (o<<1|1)
static const int MAXN = 100000;
ll a[MAXN + 5];
ll st[(MAXN << 2) + 5];
void PushUp(int o) {
st[o] = st[ls] + st[rs];
}
void Build(int o, int l, int r) {
if(l == r)
st[o] = a[l];
else {
int m = l + r >> 1;
Build(ls, l, m);
Build(rs, m + 1, r);
PushUp(o);
}
}
void Update(int o, int l, int r, int p, ll v) {
if(l == r) {
st[o] += v;
return;
} else {
int m = l + r >> 1;
if(p <= m)
Update(ls, l, m, p, v);
if(p >= m + 1)
Update(rs, m + 1, r, p, v);
PushUp(o);
}
}
ll Query(int o, int l, int r, int ql, int qr) {
if(ql <= l && r <= qr) {
return st[o];
} else {
int m = l + r >> 1;
ll res = 0;
if(ql <= m)
res = res + Query(ls, l, m, ql, qr);
if(qr >= m + 1)
res = res + Query(rs, m + 1, r, ql, qr);
return res;
}
}
#undef ls
#undef rs
};
例2 维护加法和(修改:区间加值 询问:区间加法和)
struct SegmentTree {
#define ls (o<<1)
#define rs (o<<1|1)
static const int MAXN = 100000;
ll a[MAXN + 5];
ll st[(MAXN << 2) + 5], lazy[(MAXN << 2) + 5];
void PushUp(int o) {
st[o] = st[ls] + st[rs];
}
void PushDown(int o, int l, int r) {
if(lazy[o]) {
lazy[ls] += lazy[o];
lazy[rs] += lazy[o];
int m = l + r >> 1;
st[ls] += lazy[o] * (m - l + 1);
st[rs] += lazy[o] * (r - m);
lazy[o] = 0;
}
}
void Build(int o, int l, int r) {
if(l == r)
st[o] = a[l];
else {
int m = l + r >> 1;
Build(ls, l, m);
Build(rs, m + 1, r);
PushUp(o);
}
lazy[o] = 0;
}
void Update(int o, int l, int r, int ql, int qr, ll v) {
if(ql <= l && r <= qr) {
lazy[o] += v;
st[o] += v * (r - l + 1);
return;
} else {
PushDown(o, l, r);
int m = l + r >> 1;
if(ql <= m)
Update(ls, l, m, ql, qr, v);
if(qr >= m + 1)
Update(rs, m + 1, r, ql, qr, v);
PushUp(o);
}
}
ll Query(int o, int l, int r, int ql, int qr) {
if(ql <= l && r <= qr) {
return st[o];
} else {
PushDown(o, l, r);
int m = l + r >> 1;
ll res = 0;
if(ql <= m)
res = res + Query(ls, l, m, ql, qr);
if(qr >= m + 1)
res = res + Query(rs, m + 1, r, ql, qr);
return res;
}
}
#undef ls
#undef rs
};
例3 维护最大最小值(修改:区间加值 询问:区间最大最小值)
struct SegmentTree {
#define ls (o<<1)
#define rs (o<<1|1)
static const int MAXN = 1000000;
static const int INF = 0x3f3f3f3f;
int mi[(MAXN << 2) + 5];
int ma[(MAXN << 2) + 5];
int lz[(MAXN << 2) + 5];
void PushUp(int o) {
mi[o] = min(mi[ls], mi[rs]);
ma[o] = max(ma[ls], ma[rs]);
}
void PushDown(int o, int l, int r) {
if(lz[o]) {
lz[ls] += lz[o];
lz[rs] += lz[o];
//int m = l + r >> 1;
mi[ls] += lz[o];
mi[rs] += lz[o];
ma[ls] += lz[o];
ma[rs] += lz[o];
lz[o] = 0;
}
}
void Build(int o, int l, int r) {
if(l == r) {
mi[o] = 0;
ma[o] = 0;
} else {
int m = l + r >> 1;
Build(ls, l, m);
Build(rs, m + 1, r);
PushUp(o);
}
lz[o] = 0;
}
void Update(int o, int l, int r, int ql, int qr, int v) {
if(ql <= l && r <= qr) {
lz[o] += v;
mi[o] += v;
ma[o] += v;
} else {
PushDown(o, l, r);
int m = l + r >> 1;
if(ql <= m)
Update(ls, l, m, ql, qr, v);
if(qr >= m + 1)
Update(rs, m + 1, r, ql, qr, v);
PushUp(o);
}
}
int QueryMin(int o, int l, int r, int ql, int qr) {
if(ql <= l && r <= qr) {
return mi[o];
} else {
PushDown(o, l, r);
int m = l + r >> 1;
int res = INF;
if(ql <= m)
res = QueryMin(ls, l, m, ql, qr);
if(qr >= m + 1)
res = min(res, QueryMin(rs, m + 1, r, ql, qr));
return res;
}
}
int QueryMax(int o, int l, int r, int ql, int qr) {
if(ql <= l && r <= qr) {
return ma[o];
} else {
PushDown(o, l, r);
int m = l + r >> 1;
int res = -INF;
if(ql <= m)
res = QueryMax(ls, l, m, ql, qr);
if(qr >= m + 1)
res = max(res, QueryMax(rs, m + 1, r, ql, qr));
return res;
}
}
#undef ls
#undef rs
} st;
这种线段树可以简单拓展:加多一个标记,记录这个区间的最值出自哪个元素。尤其容易维护出最左侧/最右侧的最值。
维护值域的线段树(权值线段树)
需要先离线所有可能的取值,然后离散化到线段树可以接受的空间范围。每个节点存当前的值域的信息,最简单的应用是维护当前值域的元素共有多少个。那么可以在线段树上二分,返回当前线段树中的第k大。这种情形用于在某些情况下替代平衡树的功能,优点是常数相对平衡树而言很小,对于插入数据的顺序有要求,有时可能还要求离线。真正在线维护全树第k大的只有平衡树。
struct SegmentTree {
#define ls (o<<1)
#define rs (o<<1|1)
static const int MAXN = 100000;
int cnt[(MAXN << 2) + 5];
void PushUp(int o) {
cnt[o] = cnt[ls] + cnt[rs];
}
void Build(int o, int l, int r) {
if(l == r)
cnt[o] = 0;
else {
int m = l + r >> 1;
Build(ls, l, m);
Build(rs, m + 1, r);
PushUp(o);
}
}
//修改值为p的元素的个数,增量为v,且不能为负
void Update(int o, int l, int r, int p, int v) {
if(l == r) {
cnt[o] += v;
if(cnt[o] < 0)
cnt[o] = 0;
return;
} else {
int m = l + r >> 1;
if(p <= m)
Update(ls, l, m, p, v);
if(p >= m + 1)
Update(rs, m + 1, r, p, v);
PushUp(o);
}
}
//查询<=x的元素的个数
int GetRank(int o, int l, int r, int x) {
if(r <= x) {
return cnt[o];
} else {
int m = l + r >> 1;
if(x <= m)
return GetRank(ls, l, m, x);
else
return cnt[ls] + GetRank(rs, m + 1, r, x);
}
}
//查询最小的x,使得<=x的元素个数>=rk(第rk小)
int GetValue(int o, int l, int r, int rk) {
if(l == r) {
return l;
} else {
int m = l + r >> 1;
if(cnt[ls] >= rk)
return GetValue(ls, l, m, rk);
else
return GetValue(rs, m + 1, r, rk - cnt[ls]);
}
}
#undef ls
#undef rs
} st;
注意:这里面传入的参数都应该是离散化之后的值。权值线段树不能用一次递归实现GetPrev()和GetNext(),需要通过给离散化的值做出一些修改,然后组合GetRank()和GetNext()才可以实现。优势在于代码短,常数小。
动态开点权值线段树
不再需要提前离散化了。
模板 - 数据结构 - 线段树/SegmentTree的更多相关文章
- 洛谷——P3373 【模板】线段树 2&& B 数据结构
P3373 [模板]线段树 2 题目描述 如题,已知一个数列,你需要进行下面三种操作: 1.将某区间每一个数乘上x 2.将某区间每一个数加上x 3.求出某区间每一个数的和 线段树维护区间乘法 1.如何 ...
- 「模板」 线段树——区间乘 && 区间加 && 区间求和
「模板」 线段树--区间乘 && 区间加 && 区间求和 原来的代码太恶心了,重贴一遍. #include <cstdio> int n,m; long l ...
- 线段树学习笔记(基础&进阶)(一) | P3372 【模板】线段树 1 题解
什么是线段树 线段树是一棵二叉树,每个结点存储需维护的信息,一般用于处理区间最值.区间和等问题. 线段树的用处 对编号连续的一些点进行修改或者统计操作,修改和统计的复杂度都是 O(log n). 基础 ...
- 洛谷P3372 【模板】线段树 1
P3372 [模板]线段树 1 153通过 525提交 题目提供者HansBug 标签 难度普及+/提高 提交 讨论 题解 最新讨论 [模板]线段树1(AAAAAAAAA- [模板]线段树1 洛谷 ...
- 洛谷P3373 【模板】线段树 2
P3373 [模板]线段树 2 47通过 186提交 题目提供者HansBug 标签 难度提高+/省选- 提交 讨论 题解 最新讨论 为啥WA(TAT) 题目描述 如题,已知一个数列,你需要进行 ...
- hdu 3074 Multiply game(模板级线段树)
离机房关门还有十分钟,这点时间能干些什么?故作沉思地仰望星空,重新捋一下一天的学习进度,或者,砍掉一棵模板级线段树. 纯模板,就是把单点更新,区间求和改为单点更新,区间求积. 1A. #include ...
- 线段树练习 3&&P3372 【模板】线段树 1
题目描述 Description 给你N个数,有两种操作: 1:给区间[a,b]的所有数增加X 2:询问区间[a,b]的数的和. 输入描述 Input Description 第一行一个正整数n,接下 ...
- Luogu3373【模板】线段树2
P3373[模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行 ...
- 洛谷 P3373 【模板】线段树 2 解题报告
P3373 [模板]线段树 2 题目描述 如题,已知一个数列,你需要进行下面三种操作: 1.将某区间每一个数乘上\(x\) 2.将某区间每一个数加上\(x\) 3.求出某区间每一个数的和 输入输出格式 ...
随机推荐
- 【洛谷 P3804】 【模板】后缀自动机
题目链接 #include <cstdio> #include <cstring> #include <algorithm> using namespace std ...
- Ubuntu 18.04 LTS版本 GIMP安装
为何安装? GIMP全称GNU Image Manipulation Program,是Linux下的一款图片处理软件,功能基本完备,用户体验不错. 如何安装? 命令:sudo apt install ...
- jmeter中assertion的使用
用于检查测试中得到的响应数据等是否符合预期,用以保证性能测试过程中的数据交互与预期一致. 最新版本的3.0jmeter中有13种不同的断言: 1)BeanShell断言:针对sampler中的Bean ...
- keychain不能导出p12证书的解决方法
点击左边下面的“我的证书”,然后点击右边的证书,打开下面有一个key导出就可以了.
- 使用IDEA将springboot框架导入的两种方法
第一种新建Maven,导入springboot所依赖的jar包 1.新建一个maven项目,下一步命名,保存文件地址,点击完成 2.进去springboot下载(点击进入),复制p ...
- 关于视频解码总结--JavaCV
关于视频解码的所收集资料进行总结 前言:内容不全,但有一定参考性! 关于java后台视频解码 进行js将视频每秒或更低裁截传输,后台使用最优方案(自己感觉): JavaCV(点击进入) 缺点:整合工具 ...
- 2013.5.2 - KDD第十四天
今天早上来了之后就处理语料,然后发现处理好后的gbk编码的语料在HPC上没法训,而utf8在上面训练可以.后来就让它在上面训着,学长还没来. 学长回来之后问他怎么回事,他说不应该,然后我们看了一下第一 ...
- git修改提交历史中的author信息
当次提交 当次的提交显示指定提交者信息: git commit -m "Initial commit" --author="mn <mn@furzoom.com&g ...
- DFS遍历拷贝所有子文件夹及目录列表 (Java版)
如题 注意,文件夹是不能拷贝的, 需要mkdir的 文件选择合适的流进行拷贝 main测试方法 /** * 主测试类,默认将D:\\base01 下的复制到D:\\base02 * @param ar ...
- c# 定时关闭 MessageBox 或弹出的模态窗口
我们都知道,MessageBox弹出的窗口是模式窗口,模式窗口会自动阻塞父线程的.所以如果有以下代码: MessageBox.Show("内容',"标题"); 则只有关闭 ...