【概率论】5-7:Gama分布(The Gamma Distributions Part I)
title: 【概率论】5-7:Gama分布(The Gamma Distributions Part I)
categories:
- Mathematic
- Probability
keywords:
- The Gamma Distributions
toc: true
date: 2018-03-31 18:33:39

Abstract: 本文介绍Gamma函数和Gamma分布,本课第二部分介绍指数分布
Keywords: The Gamma Distributions
开篇废话
今天的废话就是如果看书的时候没看透彻,写博客的时候就会不知所言,所以一定要学透了再总结,没学好就总结,会逻辑混乱
本文介绍了另一个非常有用的连续随机变量的分布族——Gamma分布,学习Gamma分布的适用场景和部分性质,以及一个贯穿始终的例子,排队时间,排队不只是人的排队,在计算机高性能计算,比如CUDA中,任务的排队也是有的,所以这个模型适用场景还是比较多的,虽然可能不如正态分布在自然界中那么普遍,但是在正随机变量中,Gamma分布族在连续分布中举足轻重。
The Gamma Function
在提出Gamma分布之前,我们先来认识一个非常有趣的函数,这个函数叫做Gamma函数。
首先来看个例子:
我们在给一灯泡的寿命建模,根据我们经验,这个灯泡的寿命越长,发生的概率越小,时间越短,则概率越高,寿命是0的我们不考虑,我们只考虑从0开始但不包括零,我们用下面的这个模型建模是合理的,之所以说是合理的而不是唯一的,是因为这个模型不具备唯一性:
f(x)={e−xforx>00otherwise
f(x)=
\begin{cases}
e^{-x}&\text{for} x>0\\
0&\text{otherwise}
\end{cases}
f(x)={e−x0forx>0otherwise
我们在没有大量数据或者试验情况下无法验证模型正确性,但是从目前来看好像和我们知道的先验知识吻合,所以我们就假定其是合理的,然后我们求这个灯泡的均值和方差:
E(X)=∫0∞xe−xdxVar(X)=∫0∞x2e−xdx
E(X)=\int^{\infty}_{0}xe^{-x}dx\\
Var(X)=\int^{\infty}_{0}x^2e^{-x}dx
E(X)=∫0∞xe−xdxVar(X)=∫0∞x2e−xdx
注意,第二个方差的计算我觉都有点问题,因为按照这个积分,是把均值当做 μ=0\mu=0μ=0 来计算的,但是均值是从0到正无穷的积分,所以均值不会是0,所以这个方差公式我们留意一下(如果有人知道我哪错了,可以给我留言,谢谢)
这个均值的计算是一个有趣的函数。
我们来回忆一下,我们的函数都是什么样子的,我们目前学过的函数大多数都是由初等函数经过计算得到的,比如 ex2+αsin(y)e^{x^2+\alpha sin(y)}ex2+αsin(y) 是指数计算组合了多项式和三角函数得到的一个新函数,当然,我们学了积分,微分运算后,我们可以用积分来生成新的函数,比如,我们把上面求均值的积分,定义为一个新函数,这个函数叫做Gamma函数
Definition 5.7.1 The Gamma Function.For each positive number α\alphaα ,let the value Γ(α)\Gamma(\alpha)Γ(α) be defined by the following integral:
Γ(α)=∫0∞xα−1e−xdx=1
\Gamma(\alpha)=\int^{\infty}_{0}x^{\alpha-1}e^{-x}dx=1
Γ(α)=∫0∞xα−1e−xdx=1
The function Γ\GammaΓ defined by Eq.(5.7.1) for α>0\alpha>0α>0 is called the gamma function.
这就是Gamma函数的定义,这个希腊字母 Γ\GammaΓ 读作 “Gamma” 注意,这个函数的自变量是 α\alphaα 而 xxx 只是积分中的一个哑变量,没作用,可以写作任何变量。
在举个
【概率论】5-7:Gama分布(The Gamma Distributions Part I)的更多相关文章
- 【概率论】5-7:Gama分布(The Gamma Distributions Part II)
title: [概率论]5-7:Gama分布(The Gamma Distributions Part II) categories: - Mathematic - Probability keywo ...
- 【概率论】5-8:Beta分布(The Beta Distributions)
title: [概率论]5-8:Beta分布(The Beta Distributions) categories: - Mathematic - Probability keywords: - Th ...
- 【概率论】5-9:多项式分布(The Multinomial Distributions)
title: [概率论]5-9:多项式分布(The Multinomial Distributions) categories: - Mathematic - Probability keywords ...
- 【概率论】3-7:多变量分布(Multivariate Distributions Part II)
title: [概率论]3-7:多变量分布(Multivariate Distributions Part II) categories: Mathematic Probability keyword ...
- 【概率论】3-7:多变量分布(Multivariate Distributions Part I)
title: [概率论]3-7:多变量分布(Multivariate Distributions Part I) categories: Mathematic Probability keywords ...
- 数理统计5:指数分布的参数估计,Gamma分布,Gamma分布与其他分布的联系
今天的主角是指数分布,由此导出\(\Gamma\)分布,同样,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Par ...
- 帕累托分布(Pareto distributions)、马太效应
什么是帕累托分布 帕累托分布是以意大利经济学家维弗雷多·帕雷托命名的. 是从大量真实世界的现象中发现的幂次定律分布.这个分布在经济学以外,也被称为布拉德福分布. 帕累托因对意大利20%的人口拥有80% ...
- 各种分布 高斯 Gamma Beta 多项分布
- 各类分布----二项分布,泊松分布,负二项分布,gamma 分布,高斯分布,学生分布,Z分布
伯努利实验: 如果无穷随机变量序列 是独立同分布(i.i.d.)的,而且每个随机变量 都服从参数为p的伯努利分布,那么随机变量 就形成参数为p的一系列伯努利试验.同样,如果n个随机变量 独立同 ...
随机推荐
- application.yml报错:a global security auto-configuration is now provided
报错原因: Spring Boot 1.5升级到2.0改动 security开头的配置及management.security均已过期 Actuator 配置属性变化 Endpoint变化 参考来源: ...
- Java冒泡排序与快速排序笔记
public class Sort { public static void sort() { Scanner input = new Scanner(System.in); int sort[] = ...
- StatusStrip控件的使用(转:http://blog.sina.com.cn/s/blog_4f18c3ec0100fguf.html)
c# winForm 将窗体状态栏StatusStrip 分成左中右三部分 右边显示当前时间 实现效果: 通过StatusStrip显示窗体状态栏 同时将状态栏分成三部分 居左边显示相关文字信息 中间 ...
- 规格化设计——OO第三单元总结
规格化设计--OO第三单元总结 一.JML语言理论基础.应用工具链 1.1 JML语言 JML(java modeling language)是一种描述代码行为的语言,包括前置条件.副作用等等.J ...
- iOS webrtc资料总结
1. webrtc远端图像尺寸改变时,如何调整webrtc ios view的大小 https://www.jianshu.com/p/5e1a8f5bbcf7 2. webRTC实现音频通话听筒和扬 ...
- Angular应用架构设计-3:Ngrx Store
这是有关Angular应用架构设计系列文章中的一篇,在这个系列当中,我会结合这近两年中对Angular.Ionic.甚至Vuejs等框架的使用经验,总结在应用设计和开发过程中遇到的问题.和总结的经验, ...
- SAP ABAP的CI/CD解决方案
如今国外很多partners已经在尝试Jenkins + abapGit + 公有云搭建ABAP CI/CD环境了.ABAP系统的改动通过abapGit提交,触发Jenkins上部署的命令行脚本,脚本 ...
- 从零开始部署Django生产环境(适用:《跟老齐学Python Django实战》)
<跟老齐学Python Django实战>作为市面上少有的Django通俗实战书籍,给了我学习Django很大的帮助.作为一名新入门的菜鸟,全书我重复练习了至少三遍,每次都有新的收获. 前 ...
- WLAN实验1:划分不同VLAN及Acess配置
实验环境 公司是一个较大的局域网,二层交换机S1放置在一楼,一楼有IT部门和人事部门.二层交换机S2放置在二楼,二楼有市场部和研发部.公司的策略是:不同部门的主机之间不能相互通信,同一部门的主机才可以 ...
- mysql存储、function、触发器等实例
一.创建数据库&表 DROP DATABASE IF EXISTS security; CREATE database security; USE security; CREATE TABLE ...