传送门


首先显然的是可以一开始先染好再做、每个点只会被染一次、最后只剩下两种颜色。

接下来是结论时间:序列可以反转的充要条件是除了首尾的极大颜色连通块以外其他极大颜色连通块长度为偶数。


证明充分性:考虑归纳。

如果序列中有\(3\)个极大颜色连通块且中间的连通块长度为偶数,那么先将两端的颜色块折成\(1\),然后沿着中间块的中线对折,然后把较大的块折成\(1\)即可满足条件。

如果序列中有\(x>3\)个极大颜色连通块,则把尾部的极大颜色连通块长度折成\(1\)然后沿着倒数第二个颜色块的中线对折,可以得到一个有\(x-1\)个极大颜色连通块的局面。

由归纳可知假设成立。


证明必要性:仍然考虑归纳。

如果序列中有\(1\)个非首尾极大颜色连通块长度为奇数,那么无论如何这个奇数的连通块和与其相邻的连通块无法被对折,所以显然无解。

如果序列中有\(\geq 2\)个非首尾长度为奇数的极大颜色连通块,则如果进行折叠,显然不会使这样的连通块数量减少为\(0\)。

由归纳可知假设成立


与上面的结论等价的结论是:同色连通块的起始位置的奇偶性相同。

这样我们枚举每一种颜色,再枚举其起始位置的奇偶性,对于一个原序列中这样的非首尾极大连通块,如果不满足条件就尽可能向前后拓展。最后维护一下非当前位置的元素中出现次数最多的颜色就可以了。

复杂度不难做到\(O(n)\)。

#include<bits/stdc++.h>
using namespace std; int read(){
int a = 0; char c = getchar(); while(!isdigit(c)) c = getchar();
while(isdigit(c)){a = a * 10 + c - 48; c = getchar();}
return a;
} const int _ = 1e6 + 7; vector < int > pos[_]; int arr[_] , pot[_] , sz[_] , MX , N , M; void del(int x){if(!--sz[pot[x]] && pot[x] == MX) --MX; ++sz[--pot[x]];}
void add(int x){--sz[pot[x]]; ++sz[++pot[x]];} int main(){
N = read(); M = read(); if(M == 1){puts("0"); return 0;}
for(int i = 1 ; i <= N ; ++i){++pot[arr[i] = read()]; pos[arr[i]].push_back(i);}
for(int i = 1 ; i <= M ; ++i){++sz[pot[i]]; MX = max(MX , pot[i]);}
for(int i = 1 ; i <= M ; ++i){
int ans = 1e9 , p = 0 , q , now , pre = MX , S = pos[i].size(); --sz[pot[i]]; while(!sz[MX]) --MX; now = MX; while(p < S){
q = p; while(q < S && pos[i][q] - pos[i][p] == q - p) ++q;
if(!(pos[i][p] & 1)) del(arr[pos[i][p] - 1]);
if(pos[i][q - 1] != N && (pos[i][q - 1] & 1)) del(arr[pos[i][q - 1] + 1]);
p = q;
}
ans = min(ans , N - pot[i] - MX); MX = now; p = 0;
while(p < S){
q = p; while(q < S && pos[i][q] - pos[i][p] == q - p) ++q;
if(!(pos[i][p] & 1)) add(arr[pos[i][p] - 1]);
if(pos[i][q - 1] != N && (pos[i][q - 1] & 1)) add(arr[pos[i][q - 1] + 1]);
p = q;
} p = 0;
while(p < S){
q = p; while(q < S && pos[i][q] - pos[i][p] == q - p) ++q;
if(pos[i][p] != 1 && (pos[i][p] & 1)) del(arr[pos[i][p] - 1]);
if(pos[i][q - 1] != N && !(pos[i][q - 1] & 1)) del(arr[pos[i][q - 1] + 1]);
p = q;
}
printf("%d\n" , min(ans , N - pot[i] - MX)); p = 0; MX = pre; ++sz[pot[i]];
while(p < S){
q = p; while(q < S && pos[i][q] - pos[i][p] == q - p) ++q;
if(pos[i][p] != 1 && (pos[i][p] & 1)) add(arr[pos[i][p] - 1]);
if(pos[i][q - 1] != N && !(pos[i][q - 1] & 1)) add(arr[pos[i][q - 1] + 1]);
p = q;
}
}
return 0;
}

LOJ2336 JOI2017 绳 贪心、构造的更多相关文章

  1. 贪心+构造 Codeforces Round #277 (Div. 2) C. Palindrome Transformation

    题目传送门 /* 贪心+构造:因为是对称的,可以全都左一半考虑,过程很简单,但是能想到就很难了 */ /************************************************ ...

  2. 贪心/构造/DP 杂题选做

    本博客将会收录一些贪心/构造的我认为较有价值的题目,这样可以有效的避免日后碰到 P7115 或者 P7915 这样的题就束手无策进而垫底的情况/dk 某些题目虽然跟贪心关系不大,但是在 CF 上有个 ...

  3. 贪心/构造/DP 杂题选做Ⅱ

    由于换了台电脑,而我的贪心 & 构造能力依然很拉跨,所以决定再开一个坑( 前传: 贪心/构造/DP 杂题选做 u1s1 我预感还有Ⅲ(欸,这不是我在多项式Ⅱ中说过的原话吗) 24. P5912 ...

  4. 贪心/构造/DP 杂题选做Ⅲ

    颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...

  5. Codeforces Round #301 (Div. 2)(A,【模拟】B,【贪心构造】C,【DFS】)

    A. Combination Lock time limit per test:2 seconds memory limit per test:256 megabytes input:standard ...

  6. Codeforces 1082D Maximum Diameter Graph (贪心构造)

    <题目链接> 题目大意:给你一些点的最大度数,让你构造一张图,使得该图的直径最长,输出对应直径以及所有的边. 解题分析:一道比较暴力的构造题,首先,我们贪心的想,要使图的直径最长,肯定是尽 ...

  7. hdu 4982 贪心构造序列

    http://acm.hdu.edu.cn/showproblem.php?pid=4982 给定n和k,求一个包含k个不相同正整数的集合,要求元素之和为n,并且其中k-1的元素的和为完全平方数 枚举 ...

  8. Codeforces Round #335 (Div. 2) D. Lazy Student 贪心+构造

    题目链接: http://codeforces.com/contest/606/problem/D D. Lazy Student time limit per test2 secondsmemory ...

  9. URAL 1995 Illegal spices 贪心构造

    Illegal spices 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=1995 Description Jabba: Han, m ...

随机推荐

  1. 海盗分金问题SQL求解(贪心算法)

    问题 经济学上有个"海盗分金"模型:是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨 ...

  2. windows,linux里的hosts文件

    在解析主机名的IP地址时,会先访问本机的上hosts文件,这样先配置好就可以不通过DNS服务器就获得IP地址. linux vi /etc/hosts IP 空格  主机名 windows C:\Wi ...

  3. Redis开启远程访问及密码

    一.开启远程访问 1.开放端口 firewall-cmd --zone=public --add-port=6379 firewall-cmd --zone=public --add-port=637 ...

  4. The Preliminary Contest for ICPC Asia Shenyang 2019 F. Honk's pool

    题目链接:https://nanti.jisuanke.com/t/41406 思路:如果k的天数足够大,那么所有水池一定会趋于两种情况: ① 所有水池都是一样的水位,即平均水位 ② 最高水位的水池和 ...

  5. HDU - 5126: stars (求立方体内点数 CDQ套CDQ)

    题意:现在给定空空的三维平面,有加点操作和询问立方体点数. 思路:考虑CDQ套CDQ.复杂度是O(NlogN*logN*logN),可以过此题. 具体的,这是一个四维偏序问题,4维分别是(times, ...

  6. [BZOJ2667][cqoi2012][kcoj]模拟工厂

    题目描述 Description 有一个称为“模拟工厂”的游戏是这样的:在时刻0,工厂的生产力等于1.在每个时刻,你可以提高生产力或者生产商品.如果选择提高生产力,在下一个时刻时工厂的生产力加1:如果 ...

  7. Ant Design Pro 鉴权/ 权限管理

    https://pro.ant.design/docs/authority-management-cn ant-design-pro 1.0.0 V4 最近需要项目需要用扫码登录,因此就使用antd ...

  8. vue文件夹上传组件选哪个好?

    一. 功能性需求与非功能性需求 要求操作便利,一次选择多个文件和文件夹进行上传:支持PC端全平台操作系统,Windows,Linux,Mac 支持文件和文件夹的批量下载,断点续传.刷新页面后继续传输. ...

  9. css规范思维导图(仅限于自己)

  10. 使用docker部署nginx+tomcat架构(2):访问mysql数据库

    上一篇完成了通过docker部署nginx+tomcat的基础软件架构,但是距离一个真正可用的软件架构还差得很远.其中最重要的一点是缺少数据库这个角色的存在,那么本篇就来完善这一点. 废话少说,直接进 ...