Comet OJ - Contest #7 C 临时翻出来的题(容斥+状压)
题意
https://www.cometoj.com/contest/52/problem/C?problem_id=2416
思路
这里提供一种容斥的写法(?好像网上没看到这种写法)
题目要求编号为 \(i\) 的节点不能放在 \(p_i\) 位置,那我们不妨假设没有这些条件,然后再用二进制容斥的方法减去不满足条件的情况(即固定某些 \(i\) 在 \(p_i\) 上,这样会好考虑问题一点)。
然后我们面临的问题就是,计算 \(A\)(二进制)这些数不能选,\(B\)(二进制)这些位置不能填的方案数。我们枚举两个数,计算它们的对答案的贡献。设小的数为 \(i\) ,大的数为 \(j\) ,下面分四种情况讨论:
\(i,j\) 的位置均已确定
若 \(p_i>p_j\) ,则造成 \((j-i)(p_i-p_j)(n-cnt_A)!\) 的贡献( \(cnt_A\) 为 \(A\) 的二进制中 \(1\) 的个数)。
\(j\) 的位置已经确定
\(i\) 能选的位置为 \(\setminus A\)( \(A\) 对全集取补),尝试让 \(\setminus A\) 与 \(j\) 匹配,只有 \(\setminus A\) 中大于 \(j\) 的数才能得配,匹配结果是这个数减 \(j\) 。设 \(\setminus A\) 所有数的总匹配结果为 \(t\) ,它对答案的贡献即为 \((j-i)t(n-cnt_A-1)!\)
\(i\) 的位置已经确定
与上一种其实没什么区别,只是 \(i\) 去匹配 \(\setminus A\) 罢了。
\(i,j\) 的位置均未确定
这次是一个集合匹配一个集合,在外面通过情况二来预处理。假设总匹配结果为 \(t\) ,对答案的贡献即为 \((j-i)t(n-cnt_A-2)\)
要注意固定数时如果有两个数共用了一个位置(即 \(p\) 相等),那这个贡献就直接为 \(0\) 了。
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
#define lowbit(x) ((x)&-(x))
template<typename T,typename _T>inline bool chk_min(T &x,const _T y){return y<x?x=y,1:0;}
template<typename T,typename _T>inline bool chk_max(T &x,const _T y){return x<y?x=y,1:0;}
typedef long long ll;
int cnt[(1<<16)+5],bin[(1<<16)+5],sum[(1<<16)+5];
int Sum[(1<<16)+5];
ll fac[18];
int n,p[18];
ll f1(int S,int pos)
{
S=(S|((1<<(pos+1))-1))^((1<<(pos+1))-1);
return sum[S]-cnt[S]*pos;
}
ll f2(int pos,int S)
{
S=S&((1<<pos)-1);
return cnt[S]*pos-sum[S];
}
ll solve(int A,int B)
{
ll ans=0;
FOR(i,0,n-1)FOR(j,i+1,n-1)
{
if((A>>i&1)&&(A>>j&1))
{
if(p[i]>p[j])
ans+=(j-i)*(p[i]-p[j])*fac[n-cnt[A]];
}
else if(!(A>>i&1)&&(A>>j&1))
{
ans+=(j-i)*f1(((1<<n)-1)^B,p[j])*fac[n-cnt[A]-1];
}
else if((A>>i&1)&&!(A>>j&1))
{
ans+=(j-i)*f2(p[i],((1<<n)-1)^B)*fac[n-cnt[A]-1];
}
else ans+=(j-i)*Sum[((1<<n)-1)^B]*fac[n-cnt[A]-2];
}
return ans;
}
int main()
{
fac[0]=1;FOR(i,1,16)fac[i]=fac[i-1]*i;
FOR(i,1,1<<16)cnt[i]=cnt[i^lowbit(i)]+1;
FOR(i,2,1<<16)bin[i]=bin[i>>1]+1;
FOR(i,1,1<<16)sum[i]=sum[i^lowbit(i)]+bin[lowbit(i)];
FOR(i,1,1<<16)Sum[i]=Sum[i^lowbit(i)]+f1(i^lowbit(i),bin[lowbit(i)]);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
FOR(i,0,n-1)scanf("%d",&p[i]),p[i]--;
ll ans=0;
FOR(i,0,(1<<n)-1)
{
int S=0;
bool flg=1;
FOR(j,0,n-1)if(i>>j&1)
{
if(S&(1<<p[j]))
{
flg=0;
break;
}
S|=1<<p[j];
}
if(!flg)continue;
if(cnt[i]&1)ans-=solve(i,S);
else ans+=solve(i,S);
}
printf("%lld\n",ans);
}
return 0;
}
Comet OJ - Contest #7 C 临时翻出来的题(容斥+状压)的更多相关文章
- [Comet OJ - Contest #6 C][48C 2279]一道树题_树
一道树题 题目大意: 给定一棵树,边的编号为读入顺序.现在规定,区间$[L, R]$的贡献$S(L,R)$为把编号在该区间里的边都连上后,当前形成的森林中点数大于等于$2$的联通块个数. 求$\sum ...
- Comet OJ - Contest #2 简要题解
Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...
- Comet OJ - Contest #2简要题解
Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...
- Comet OJ - Contest #4--前缀和
原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...
- Comet OJ - Contest #11 题解&赛后总结
Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...
- Comet OJ - Contest #8
Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...
- Comet OJ - Contest #13-C2
Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...
- Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」
来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...
- Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)
来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...
随机推荐
- React及Nextjs相关知识点小结
React及Nextjs知识点小结 函数式组件和类组件区别是什么 1.函数式组件是用于创建无状态的组件,组件不会被实例化,无法访问this中的对象,无法访问生命周期方法,是无副作用的,相比于类组件函数 ...
- 古老的txt下传和txt上载
1.下传文件 TYPES:BEGIN OF TY_DATA, A2 TYPE CHAR20, B2 TYPE I, C2 TYPE CHAR20, END OF TY_DATA. DATA:IT_DA ...
- css中的baseline
这是css中的一个容易被人忽略的概念,今天在知乎上看到一个问题,这个问题应该是关于baseline,才去补习了一下关于baseline的知识,首先我来还原一下问题: <div style=&qu ...
- [转]技术比较Agent和Agentless监控优缺点
本文并非原创,转自:http://wenku.baidu.com/link?url=NGT2NA7Lf6fZSPmcOxFQqL4cYROHlIOJyiWCnGdwv3kljMqub-6zyjgsSw ...
- java多线程执行时主线程的等待
1.通过thread.join()方式,注意:如果有多个子线程,需要将全部的线程先start,然后再join.代码示例如下: public class Main { public static ...
- 4、Work-Queue
Work Queues using the Java Client In the first tutorial we wrote programs to send and receive messag ...
- Microsoft Surface 2019新品发布会汇总
Microsoft Surface 2019 新品发布会汇总 10月2日晚,微软举行了Microsoft Surface 2019秋季新品发布会,本次发布会涉及如下设备内容等: SurfaceLapt ...
- SSI注入--嵌入HTML页面中的指令,类似jsp、asp对现有HTML页面增加动态生成内容,见后面例子
SSI注入漏洞总结 from:https://www.mi1k7ea.com/2019/09/28/SSI%E6%B3%A8%E5%85%A5%E6%BC%8F%E6%B4%9E%E6%80%BB%E ...
- flask 案例项目基本框架的搭建
综合案例:学生成绩管理项目搭建 一 新建项目目录students,并创建虚拟环境 mkvirtualenv students 二 安装开发中使用的依赖模块 pip install flask==0.1 ...
- Dmidecode命令
Dmidecode简介 DMI (Desktop Management Interface, DMI)就是帮助收集电脑系统信息的管理系统,DMI信息的收集必须在严格遵照SMBIOS规范的前提下进行. ...