查找、插入和删除在平均和最坏情况下都是O(log n)

增加和删除可能需要通过一次或多次树旋转来重新平衡这个树

节点的平衡因子是它的左子树的高度减去它的右子树的高度。带有平衡因子 1、0 或 -1 的节点被认为是平衡的。

带有平衡因子 -2 或 2 的节点被认为是不平衡的,并需要重新平衡这个树。平衡因子可以直接存储在每个节点中,或从可能存储在节点中的子树高度计算出来。

单向右旋平衡处理LL:由于在*a的左子树根结点的左子树上插入结点,*a的平衡因子由1增至2,致使以*a为根的子树失去平衡,则需进行一次右旋转操作;----拉齿轮,或者叫升降机  找到那个失衡的节点
单向左旋平衡处理RR:由于在*a的右子树根结点的右子树上插入结点,*a的平衡因子由-1变为-2,致使以*a为根的子树失去平衡,则需进行一次左旋转操作;----反向拉齿轮,找到那个失衡的节点做为跟节点
双向旋转(先左后右)平衡处理LR:由于在*a的左子树根结点的右子树上插入结点,*a的平衡因子由1增至2,致使以*a为根的子树失去平衡,则需进行两次旋转(先左旋后右旋)操作。----先变成左左,再拉齿轮就好了
双向旋转(先右后左)平衡处理RL:由于在*a的右子树根结点的左子树上插入结点,*a的平衡因子由-1变为-2,致使以*a为根的子树失去平衡,则需进行两次旋转(先右旋后左旋)操作。----先变成右右,再拉齿轮
 
删除
从AVL树中删除可以通过把要删除的节点向下旋转成一个叶子节点,接着直接剪除这个叶子节点来完成。因为在旋转成叶子节点期间最多有 log n个节点被旋转,而每次 AVL 旋转耗费恒定的时间,删除处理在整体上耗费 O(log n) 时间。
查找
在AVL树中查找同在一般BST完全一样的进行,所以耗费 O(log n) 时间,因为AVL树总是保持平衡的。不需要特殊的准备,树的结构不会由于查询而改变。(这是与伸展树查找相对立的,它会因为查找而变更树结构。)

面试题:什么叫平衡二叉查找树--AVL树的更多相关文章

  1. 006-数据结构-树形结构-二叉树、二叉查找树、平衡二叉查找树-AVL树

    一.概述 树其实就是不包含回路的连通无向图.树其实是范畴更广的图的特例. 树是一种数据结构,它是由n(n>=1)个有限节点组成一个具有层次关系的集合. 1.1.树的特性: 每个结点有零个或多个子 ...

  2. 二叉树-二叉查找树-AVL树-遍历

    一.二叉树 定义:每个节点都不能有多于两个的儿子的树. 二叉树节点声明: struct treeNode { elementType element; treeNode * left; treeNod ...

  3. 【查找结构3】平衡二叉查找树 [AVL]

    在上一个专题中,我们在谈论二叉查找树的效率的时候.不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这 ...

  4. 树的平衡之AVL树——错过文末你会后悔,信我

    学习数据结构应该是一个循序渐进的过程: 当我们学习数组时,我们要体会数组的优点:仅仅通过下标就可以访问我们要找的元素(便于查找). 此时,我们思考:假如我要在第一个元素前插入一个新元素?采用数组需要挪 ...

  5. 平衡二叉查找树 AVL 的实现

    不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这个想法,平衡二叉树出现了. 平衡二叉树的定义 (A ...

  6. 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)

    定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...

  7. 二叉搜索树的平衡--AVL树和树的旋转(图解)

    二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. ...

  8. 二叉搜索树的平衡--AVL树和树的旋转

    二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. ...

  9. AVL树的旋转实现

    AVL树:带有平衡条件的二叉查找树,即一棵AVL树是其每个节点的左子树和右子树的高度最多相差1的二叉查找树.一般通过Single Rotate和Double Rotate来保持AVL树的平衡.AVL树 ...

随机推荐

  1. springmvc controller层接收List类型的参数

    Spring MVC在接收集合请求参数时,需要在Controller方法的集合参数里前添加@RequestBody,而@RequestBody默认接收的enctype (MIME编码)是applica ...

  2. JavaScript的深克隆与浅克隆

    JS数据类型分为两类: 基本类型(Number.Boolean.Undefined.Null.String.Symbol(ES6新加,此处不讨论))与引用类型(Object).原始类型存储的是对象的实 ...

  3. zzulioj - 2624: 小H的奇怪加法

    题目链接:http://acm.zzuli.edu.cn/problem.php?id=2624 题目描述 小H非常喜欢研究算法,尤其是各种加法.没错加法包含很多种,例如二进制中的全加,半加等.全加: ...

  4. 深入js系列-类型(数字)

    开头 js数字没有明确区分浮点数和整数类型,统一用number类型表示. number 基于IEEE 754标准实现 js采用的是双精度(64位二进制) 我们看一个基于IEEE 754标准实现都有会有 ...

  5. Springboot之自定义配置

    SpringBoot自定义配置 springboot在这里就不过多介绍了,大家都应该了解springboot零配置文件,所以配置信息都装配在属性文件(properties.yml.yaml)中,有时我 ...

  6. QT QWidget 关闭的流程

    当QWidget被点击右上角“X”关闭时: 1.调用虚函数closeEvent 2.调用QWidget的析构函数

  7. udev规则(转)

    Writing udev rules by Daniel Drake (dsd)Version 0.74 The most recent version of this document can al ...

  8. Docker是什么?可以用Docker做什么

    其实可以把Docker理解成一个专门为应用程序与执行环境的轻型虚拟机. Docker的思想来自于集装箱,集装箱解决了什么问题?在一艘大船上,可以把货物规整的摆放起来.并且各种各样的货物被集装箱标准化了 ...

  9. QML学习(五)——<TextInput和TextEdif输入框>

    这一篇来看两个用于文本输入的项目,分别是作为单行文本输入的 TextInput 和多行文本输入的 TextEdit . 下面开始教程. TextInput TextInput 项目用来显示单行可编辑的 ...

  10. java 查找指定包下的类

    package com.jason.test; import java.io.File; import java.io.IOException; import java.io.UnsupportedE ...