04-人脸识别-triplets loss 的解释(转载)
转载至:
https://blog.csdn.net/tangwei2014/article/details/46788025
下面是内容:
【前言】
最近,learning to rank 的思想逐渐被应用到很多领域,比如google用来做人脸识别(faceNet),微软Jingdong Wang 用来做 person-reid 等等。learning to rank中其中重要的一个步骤就是找到一个好的similarity function,而triplet loss是用的非常广泛的一种。
【理解triplet】
如上图所示,triplet是一个三元组,这个三元组是这样构成的:从训练数据集中随机选一个样本,该样本称为Anchor,然后再随机选取一个和Anchor (记为x_a)属于同一类的样本和不同类的样本,这两个样本对应的称为Positive (记为x_p)和Negative (记为x_n),由此构成一个(Anchor,Positive,Negative)三元组。
【理解triplet loss】
有了上面的triplet的概念, triplet loss就好理解了。针对三元组中的每个元素(样本),训练一个参数共享或者不共享的网络,得到三个元素的特征表达,分别记为: 。triplet loss的目的就是通过学习,让x_a和x_p特征表达之间的距离尽可能小,而x_a和x_n的特征表达之间的距离尽可能大,并且要让x_a与x_n之间的距离和x_a与x_p之间的距离之间有一个最小的间隔
。公式化的表示就是:
对应的目标函数也就很清楚了:
这里距离用欧式距离度量,+表示[]内的值大于零的时候,取该值为损失,小于零的时候,损失为零。
由目标函数可以看出:
- 当x_a与x_n之间的距离 < x_a与x_p之间的距离加
时,[]内的值大于零,就会产生损失。
- 当x_a与x_n之间的距离 >= x_a与x_p之间的距离加
时,损失为零。
【triplet loss 梯度推导】
上述目标函数记为L。则当第i个triplet损失大于零的时候,仅就上述公式而言,有:
【算法实现时候的提示】
可以看到,对x_p和x_n特征表达的梯度刚好利用了求损失时候的中间结果,给的启示就是,如果在CNN中实现 triplet loss layer, 如果能够在前向传播中存储着两个中间结果,反向传播的时候就能避免重复计算。这仅仅是算法实现时候的一个Trick。
04-人脸识别-triplets loss 的解释(转载)的更多相关文章
- (转载)人脸识别中Softmax-based Loss的演化史
人脸识别中Softmax-based Loss的演化史 旷视科技 近期,人脸识别研究领域的主要进展之一集中在了 Softmax Loss 的改进之上:在本文中,旷视研究院(上海)(MEGVII Re ...
- 浅谈人脸识别中的loss 损失函数
浅谈人脸识别中的loss 损失函数 2019-04-17 17:57:33 liguiyuan112 阅读数 641更多 分类专栏: AI 人脸识别 版权声明:本文为博主原创文章,遵循CC 4.0 ...
- 人脸识别 - 环境搭建(Ubuntu 16.04)
安装人脸识别开源库(face_recognition) pip3 install face_recognition 注意:pip3 尝试编译 dlib 依赖时很可能会报错,参考:https://www ...
- 人脸识别技术大总结1——Face Detection & Alignment
搞了一年人脸识别,寻思着记录点什么,于是想写这么个系列,介绍人脸识别的四大块:Face detection, alignment, verification and identification(re ...
- 人脸识别技术大总结(1):Face Detection & Alignment
http://blog.jobbole.com/85783/ 首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他技术 - 导航条 - 首页 最新文章 IT 职场 前端 - Ja ...
- DeepID人脸识别算法之三代(转)
DeepID人脸识别算法之三代 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/42091205 DeepID,目前最强人脸识别算法,已经三 ...
- 项目总结二:人脸识别项目(Face Recognition for the Happy House)
一.人脸验证问题(face verification)与人脸识别问题(face recognition) 1.人脸验证问题(face verification): 输入 ...
- face recognition[翻译][深度人脸识别:综述]
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领 ...
- 人脸识别准备 -- 基于raspberry pi 3b + movidius
最近准备系统地学习一下深度学习和TensorFlow,就以人脸识别作为目的. 十年前我做过一些图像处理相关的项目和研究,涉及到图像检索.记得当时使用的是SIFT特征提取,该特征算子能很好地抵抗图像旋转 ...
随机推荐
- Python equivalent of D3.js
http://brandonrose.org/ Python equivalent of D3.js Ask Question Asked 7 years, 1 month ago Act ...
- DRF--序列化
为什么要用序列化 当我们做前后端分离的项目时,前后端交互一般都是JSON格式的数据,那么我们给前端的数据就要转为JSON格式,就需要我们拿到数据库后的数据进行序列化.在看DRF的序列化之前,先来看看d ...
- Spring Boot(十二):LocalDateTime格式化处理
Java 8之后,日期类的处理建议使用java.time包中对应的LocalDateTime, LocalDate, LocalTime类.(参考Java8新特性) 在Spring Boot中(验证版 ...
- 【Java语言特性学习之四】常用集合
java中常见的数据结构
- 详解 IaaS、PaaS和SaaS 以及他们各自的代表公司
——IaaS,PaaS和SaaS 是云计算领域的专业术语,也是云计算的三种服务模式. (1)SaaS:Software as a Service,软件即服务(也称为云应用程序服务) . 云市场中企 ...
- 通信与io:io是通信的端点机制
通信与io:io是通信的端点机制: io可以是连接到文件系统的: 也可以是连接到对等端点的:
- Elastic Beats介绍
需要学习的地方:概念,用法,模块使用 Elastic Beats介绍 Elastic Stack传统上由三个主要组件(Elasticsearch,Logstash和Kibana)组成,早已脱离了这种组 ...
- C#编辑xml文件
string path = @"C:\Users\Administrator\Desktop\无人智能便利店\install\收银端\XMLRFI.xml"; XmlDocumen ...
- YII 项目部署时, 显示空白内容
本地开发完成,想部署到服务器上,选用了GIT来在服务器上获取上传的本地项目,结果clone后,访问网址后,YII就是个空白页,啥信息也没有,无语.. 刚开始以为是权限问题,后来给访问的目录加了777, ...
- 这些Python库真的很“冷”,但是却很强大
Python是一种很棒的编程语言.事实上,它还是世界上发展最快的编程语言之一.它一次又一次证明了它在数据科学职位中的实用性.整个Python及其库的生态系统使其成为全世界用户(初学者和高级)的合适选择 ...