转载至:

https://blog.csdn.net/tangwei2014/article/details/46788025

下面是内容:

【前言】 
最近,learning to rank 的思想逐渐被应用到很多领域,比如google用来做人脸识别(faceNet),微软Jingdong Wang 用来做 person-reid 等等。learning to rank中其中重要的一个步骤就是找到一个好的similarity function,而triplet loss是用的非常广泛的一种。

【理解triplet】

如上图所示,triplet是一个三元组,这个三元组是这样构成的:从训练数据集中随机选一个样本,该样本称为Anchor,然后再随机选取一个和Anchor (记为x_a)属于同一类的样本和不同类的样本,这两个样本对应的称为Positive (记为x_p)和Negative (记为x_n),由此构成一个(Anchor,Positive,Negative)三元组。

【理解triplet loss】 
有了上面的triplet的概念, triplet loss就好理解了。针对三元组中的每个元素(样本),训练一个参数共享或者不共享的网络,得到三个元素的特征表达,分别记为: 。triplet loss的目的就是通过学习,让x_a和x_p特征表达之间的距离尽可能小,而x_a和x_n的特征表达之间的距离尽可能大,并且要让x_a与x_n之间的距离和x_a与x_p之间的距离之间有一个最小的间隔。公式化的表示就是: 

对应的目标函数也就很清楚了: 
 
这里距离用欧式距离度量,+表示[]内的值大于零的时候,取该值为损失,小于零的时候,损失为零。 
由目标函数可以看出:

  • 当x_a与x_n之间的距离 < x_a与x_p之间的距离加时,[]内的值大于零,就会产生损失。
  • 当x_a与x_n之间的距离 >= x_a与x_p之间的距离加时,损失为零。

【triplet loss 梯度推导】 
上述目标函数记为L。则当第i个triplet损失大于零的时候,仅就上述公式而言,有: 

【算法实现时候的提示】 
可以看到,对x_p和x_n特征表达的梯度刚好利用了求损失时候的中间结果,给的启示就是,如果在CNN中实现 triplet loss layer, 如果能够在前向传播中存储着两个中间结果,反向传播的时候就能避免重复计算。这仅仅是算法实现时候的一个Trick。

04-人脸识别-triplets loss 的解释(转载)的更多相关文章

  1. (转载)人脸识别中Softmax-based Loss的演化史

    人脸识别中Softmax-based Loss的演化史  旷视科技 近期,人脸识别研究领域的主要进展之一集中在了 Softmax Loss 的改进之上:在本文中,旷视研究院(上海)(MEGVII Re ...

  2. 浅谈人脸识别中的loss 损失函数

    浅谈人脸识别中的loss 损失函数 2019-04-17 17:57:33 liguiyuan112 阅读数 641更多 分类专栏: AI 人脸识别   版权声明:本文为博主原创文章,遵循CC 4.0 ...

  3. 人脸识别 - 环境搭建(Ubuntu 16.04)

    安装人脸识别开源库(face_recognition) pip3 install face_recognition 注意:pip3 尝试编译 dlib 依赖时很可能会报错,参考:https://www ...

  4. 人脸识别技术大总结1——Face Detection & Alignment

    搞了一年人脸识别,寻思着记录点什么,于是想写这么个系列,介绍人脸识别的四大块:Face detection, alignment, verification and identification(re ...

  5. 人脸识别技术大总结(1):Face Detection & Alignment

    http://blog.jobbole.com/85783/     首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他技术 - 导航条 - 首页 最新文章 IT 职场 前端 - Ja ...

  6. DeepID人脸识别算法之三代(转)

    DeepID人脸识别算法之三代 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/42091205 DeepID,目前最强人脸识别算法,已经三 ...

  7. 项目总结二:人脸识别项目(Face Recognition for the Happy House)

    一.人脸验证问题(face verification)与人脸识别问题(face recognition) 1.人脸验证问题(face verification):           输入       ...

  8. face recognition[翻译][深度人脸识别:综述]

    这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领 ...

  9. 人脸识别准备 -- 基于raspberry pi 3b + movidius

    最近准备系统地学习一下深度学习和TensorFlow,就以人脸识别作为目的. 十年前我做过一些图像处理相关的项目和研究,涉及到图像检索.记得当时使用的是SIFT特征提取,该特征算子能很好地抵抗图像旋转 ...

随机推荐

  1. luoguP2597 [ZJOI2012]灾难

    题意 这题思路好奇怪啊 见到有向无环图显然是要拓朴排序,不妨按照被吃向吃连边,那么\(x\)灭绝当且仅当x的入点都灭绝,于是考虑怎样x的入点都灭绝 比如4号节点,它灭绝当且仅当2和3灭绝,2和3灭绝当 ...

  2. 第七章 确保Web安全的HTTPS

    第七章 确保Web安全的HTTPS 使用HTTPS通信机制可以有效防止信息窃听或身份伪装等安全问题. 1.HTTP缺点 [通信使用明文(不加密)]:内容容易被窃听. 加密处理防止被窃听.根据加密的对象 ...

  3. 【正则】day02

    正则表达式的应用匹配.查找.分割.替换对于普通字符串处理函数和正则表达式字符处理函数,使用的原则:能用普通字符串处理函数处理的,就不要用正则表达式处理. 原因:普通字符串处理函数:效率高.简单.正则表 ...

  4. 小白专场-FileTransfer-python语言实现

    目录 更新.更全的<数据结构与算法>的更新网站,更有python.go.人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11407287.h ...

  5. Tomca原理分析之责任链

    责任链使用位置:Container处理请求 Container处理请求是使用Pipeline-Valve管道来处理的!(Valve是阀门之意) Pipeline-Valve是责任链模式,责任链模式是指 ...

  6. 大话设计模式Python实现-适配器模式

    适配器模式(Adapter Pattern):将一个类的接口转换成为客户希望的另外一个接口. 下面是一个适配器模式的demo: #!/usr/bin/env python # -*- coding:u ...

  7. Installing on Kubernetes with NATS Operator

    https://github.com/nats-io/nats-operator https://hub.helm.sh/charts/bitnami/nats https://github.com/ ...

  8. mysql只显示表名和备注

    查看某个数据下的表及其备注: select table_name,table_comment from information_schema.tables where table_schema='db ...

  9. 剑指 Offer——3. 从尾到头打印链表

    题目描述 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. 一般是不破坏链表结构 思路与实现 直接用栈存储就好了 public class Solution { public Arra ...

  10. AppSetting配置工具类

    <?xml version="1.0" encoding="utf-8"?> <!-- 有关如何配置 ASP.NET 应用程序的详细信息,请访 ...