传送门

似乎可以按边权排序后二分图匹配

这里给一个复杂度稳定的算法

把一个公主能匹配的两个点连边,然后依次加边,每当加到一个大小为\(n\)的连通块中有\(n\)条边之后,这时形成了基环树,将这些边定向,可以使得每个点入度均为1,也就是每个点都有合法匹配(对于一棵树,有\(n-1\)条边,它们所代表的匹配也是合法的)

于是可以把所有边按边权降序排序,每次加一条边,如果使得两个不相连的连通块连通,并且连通后不超过一个环,或者是使一个无环连通块出现环,答案就可以加上这条边的边权.注意如果连通块有环要在根处打标记

#include<bits/stdc++.h>
#define il inline
#define re register
#define LL long long
#define db double
#define ldb long double
#define eps (1e-7) using namespace std;
const int N=200000+10,mod=20021101;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct edge
{
int x,y,z;
bool operator < (const edge &bb) const {return z>bb.z;}
}e[N];
int n,m,fa[N],a[N];
il int findf(int x){return fa[x]==x?x:fa[x]=findf(fa[x]);}
il bool merg(int x,int y)
{
int xx=findf(x),yy=findf(y);
if(a[xx]&&a[yy]) return false;
if(xx==yy) a[xx]=1;
else fa[yy]=xx,a[xx]|=a[yy];
return true;
}
int main()
{
m=rd(),n=rd();
for(int i=1;i<=n;i++)
{
int x=rd(),y=rd(),z=rd();
e[i]=(edge){x,y,z};
}
sort(e+1,e+n+1);
int ans=0;
for(int i=1;i<=m;i++) fa[i]=i;
for(int i=1;i<=n;i++)
{
int x=e[i].x,y=e[i].y,z=e[i].z;
if(merg(x,y)) ans+=z;
}
printf("%d\n",ans);
return 0;
}

CF875F Royal Questions的更多相关文章

  1. CF875F Royal Questions 基环树、Kruskal

    题目传送门:http://codeforces.com/problemset/problem/875/F 题意:有$N$个王子和$M$个公主,每个公主或王子都只能选择至多一个王子或公主作为自己的结婚对 ...

  2. CF875F Royal Questions[最大生成基环树森林]

    这题这场比赛一堆人秒切..果然还是我太菜了吗 题意:二分图,右边$m$个点每个点$i$向左边有且仅有两条连边,边权都是$a_i$.求最大匹配. 一个朴素思想,二分图匹配,用贪心带匈牙利搞一搞,但是复杂 ...

  3. 【CF875F】Royal Questions 最小生成基环树森林

    [CF875F]Royal Questions 题意:国王的n个王子该结婚了!现在从外国来了m位公主,第i位公主的嫁妆是wi.由于进步思想的传播,每个公主在选择配偶的事情上是有自主权的,具体地,每个公 ...

  4. Codeforces 875F Royal Questions (看题解)

    我还以为是什么板子题呢... 我们把儿子当做点, 公主当做边, 然后就是求边权值最大基环树森林. #include<bits/stdc++.h> #define LL long long ...

  5. CF F. Royal Questions kruskal

    每一个 $A$ 必须和指定的唯一的 $B$ 匹配,转化成图论关系就是 $A$ 和 $B$ 之间有若干条连边,每个边有一个边权,而该边权只能代表一对 $A,B$. 这其实就是一个基环树的结构. 所以只需 ...

  6. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  7. CCPC-Wannafly Summer Camp 2019 Day1

    A - Jzzhu and Cities CodeForces - 449B 题意:n座城市,m条路,k条铁路啥的吧,然后要求最多能删多少条铁路保持1到$n$的最短路不变. 思路:因为铁路是从1出发的 ...

  8. WCF学习系列二---【WCF Interview Questions – Part 2 翻译系列】

    http://www.topwcftutorials.net/2012/09/wcf-faqs-part2.html WCF Interview Questions – Part 2 This WCF ...

  9. [译]Node.js Interview Questions and Answers (2017 Edition)

    原文 Node.js Interview Questions for 2017 什么是error-first callback? 如何避免无止境的callback? 什么是Promises? 用什么工 ...

随机推荐

  1. gitlab搭建与配置说明

    1. 概述 Gitlab分为社区版和企业版,此次安装的是社区版(gitlab-ce). 2. 准备 本次使用系统为Ubuntu16.04. 3. 安装 添加GitLab仓库,并安装到服务器上(将git ...

  2. 关于js特效轮播图练习

    [出现问题] js轮播图,图片未正常轮播. [解决方法] 通过对代码的检查,发现是以下三个原因造成的错误. 1.js代码问题 js代码使用alert(test);,测试修改完毕后,发现依然没有解决错误 ...

  3. python 随机数模块 -- random

    一.概述 这个模块实现的伪随机数生成器. 对于整数,从区间选取.对于序列,随机元素. 在实线的,有功能来计算均匀分布,正态分布(高斯) ,对数正态分布,负指数,γ和β分布.对于生成的角度分布,冯·米塞 ...

  4. Java中字符串string的数据类型

    Java中字符串string的数据类型 时间:2017-07-03 08:01:47 YuanMxy 原文:https://blog.csdn.net/YuanMxy/article/details/ ...

  5. 自学Linux Shell5.1-shell父子关系

    点击返回 自学Linux命令行与Shell脚本之路 5.1-shell父子关系 1 shell常见的种类  bash是Linux标准默认的Shell,是BunrneAgain Shell的缩写,内部命 ...

  6. BZOJ 3864 Hero meet devil 超详细超好懂题解

    题目链接 BZOJ 3864 题意简述 设字符集为ATCG,给出一个长为\(n(n \le 15)\)的字符串\(A\),问有多少长度为\(m(m \le 1000)\)的字符串\(B\)与\(A\) ...

  7. PKUWC 2019 记

     “连剑都插在了地上,可是我不应该就这么承认失败,想要到达山顶的人,不应该在山脚下就倒下啊” Day -5 (2019.1.15) 学考结束了,文化课暂停一段.早上飞机前往中山纪念中学.纪中好大呀,果 ...

  8. HDU 3605 Escape (网络流,最大流,位运算压缩)

    HDU 3605 Escape (网络流,最大流,位运算压缩) Description 2012 If this is the end of the world how to do? I do not ...

  9. react性能检测与优化

    网页运行最重要的是速度快嘛,那我们怎么知道网页运行的时候,哪些部分快哪些部分慢呢? 我们可以安装react性能检测工具进行检测,通过安装 然后修改app/index.jsx文件 ,在要检测的组件运行之 ...

  10. UML简单熟悉

    + :代表public - :代表private # :代表protected  实现,继承关系:implements,extends 关联关系:使一个类知道另一个类的属性和方法 每一个Driver类 ...