fast-rcnn里的一些具体内容
NMS:Non-Maximum Suppression(非极大值抑制)
假设从一个图像中得到了2000个region proposals,通过在RCNN和SPP-net之后我们会得到2000*4096的一个特征矩阵,然后通过N个SVM来判断每一个region属于N个类的scores。其中,SVM的权重矩阵大小为4096*N,最后得到2000*N的一个score矩阵(其中,N为类别的数量)。
Non-Maximum Suppression就是需要根据score矩阵和region的坐标信息,从中找到置信度比较高的bounding box。
首先,NMS计算出每一个bounding box的面积,然后根据score进行排序,把score最大的bounding box作为队列中。接下来,计算其余bounding box与当前最大score与box的IoU,去除IoU大于设定的阈值的bounding box。然后重复上面的过程,直至候选bounding box为空。最终,检测了bounding box的过程中有两个阈值,一个就是IoU,另一个是在过程之后,从候选的bounding box中剔除score小于阈值的bounding box。需要注意的是:Non-Maximum Suppression一次处理一个类别,如果有N个类别,Non-Maximum Suppression就需要执行N次。
RPN网络得到的大约2万个anchor不是都直接给Fast-RCNN,因为有很多重叠的框。文章通过非极大值抑制的方法,设定IoU为0.7的阈值,即仅保留覆盖率不超过0.7的局部最大分数的box(粗筛)。最后留下大约2000个anchor,然后再取前N个box(比如300个)给Fast-RCNN。Fast-RCNN将输出300个判定类别及其box,对类别分数采用阈值为0.3的非极大值抑制(精筛),并仅取分数大于detect_th的目标结果(比如,只取分数60分以上的结果)。
fast-rcnn里的一些具体内容的更多相关文章
- Fast RCNN 训练自己数据集 (2修改数据读取接口)
Fast RCNN训练自己的数据集 (2修改读写接口) 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ http ...
- 论文笔记--Fast RCNN
很久之前试着写一篇深度学习的基础知识,无奈下笔之后发现这个话题确实太大,今天发一篇最近看的论文Fast RCNN.这篇文章是微软研究院的Ross Girshick大神的一篇作品,主要是对RCNN的一些 ...
- Fast RCNN 训练自己数据集 (1编译配置)
FastRCNN 训练自己数据集 (1编译配置) 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https:/ ...
- 【神经网络与深度学习】【计算机视觉】Fast R-CNN
转自:https://zhuanlan.zhihu.com/p/24780395?refer=xiaoleimlnote 首先声明:本文很多内容来自两个博客: RCNN, Fast-RCNN, Fas ...
- Fast RCNN 训练自己的数据集(3训练和检测)
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https://github.com/YihangLou/fas ...
- RCNN--对象检测的又一伟大跨越 2(包括SPPnet、Fast RCNN)(持续更新)
继续上次的学习笔记,在RCNN之后是Fast RCNN,但是在Fast RCNN之前,我们先来看一个叫做SPP-net的网络架构. 一,SPP(空间金字塔池化,Spatial Pyramid Pool ...
- RCNN (Regions with CNN) 目标物检测 Fast RCNN的基础
Abstract: 贡献主要有两点1:可以将卷积神经网络应用region proposal的策略,自底下上训练可以用来定位目标物和图像分割 2:当标注数据是比较稀疏的时候,在有监督的数据集上训练之后到 ...
- object detection技术演进:RCNN、Fast RCNN、Faster RCNN
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...
- Fast R-CNN中的边框回归
前面对R-CNN系的目标检测方法进行了个总结,其中对目标的定位使用了边框回归,当时对这部分内容不是很理解,这里单独学习下. R-CNN中最后的边框回归层,以候选区域(Region proposal)为 ...
- 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...
随机推荐
- spring cloud: Hystrix(八):turbine集群监控(dashboard)
turbine是聚合服务器发送事件流数据的一个工具,hystrix的监控中,只能监控单个节点,实际生产中都为集群, 因此可以通过turbine来监控集群下hystrix的metrics情况,通过eur ...
- java ----> 类转换异常
com.rr.domain.Department_$$_javassist_5 cannot be cast to javassist.util.proxy.Proxy 两个原因: 1.懒加载 在we ...
- 彻底搞懂 CPU 中的内存结构
https://www.cnblogs.com/YJK923/p/10302180.html
- Django使用admin管理后台管理数据库表
1.在admin.py文件中注册需要创建的表,例: from .models import * # Register your models here. admin.site.register(Use ...
- FreeBDS之ipf防火墙
FreeBSD使用手册https://www.freebsd.org/doc/zh_CN/books/handbook/index.html https://www.freebsd.org/doc/z ...
- 【IOS学习】【Swift语言】
基本语法: OS X playground 引入 import Cocoa IOS playground 引入 import UIKit 基本数据类型 let 定义常量 定义完成之后无法修改 var ...
- hdu-4507 吉哥系列故事——恨7不成妻 数位DP 状态转移分析/极限取模
http://acm.hdu.edu.cn/showproblem.php?pid=4507 求[L,R]中不满足任意条件的数的平方和mod 1e9+7. 条件: 1.整数中某一位是7:2.整数的每一 ...
- 微信小程序select不能使用,如何实现同样的效果
如果想实现同样的效果,只能使用小程序组件picker,其中,可以有一列,或者多列 点击链接查看详情: https://mp.weixin.qq.com/debug/wxadoc/dev/compone ...
- confirm提示弹出确定和取消按钮
js----> var con = confirm('这是一个确定加取消的提示窗口') if(con==true){ document.write("点击了确定按钮") }e ...
- Linux中常用压缩打包工具
Linux中常用压缩打包工具 压缩打包是常用的功能,在linux中目前常用的压缩工具有gzip,bzip2以及后起之秀xz.本文将介绍如下的工具常见压缩.解压缩工具以及打包工具tar. gzip2 直 ...