Mike has always been thinking about the harshness of social inequality. He's so obsessed with it that sometimes it even affects him while solving problems. At the moment, Mike has two sequences of positive integers A = [a1, a2, ..., an] and B = [b1, b2, ..., bn] of length n each which he uses to ask people some quite peculiar questions.

To test you on how good are you at spotting inequality in life, he wants you to find an "unfair" subset of the original sequence. To be more precise, he wants you to select k numbers P = [p1, p2, ..., pk] such that 1 ≤ pi ≤ n for 1 ≤ i ≤ k and elements in P are distinct. Sequence P will represent indices of elements that you'll select from both sequences. He calls such a subset P "unfair" if and only if the following conditions are satisfied: 2·(ap1 + ... + apk) is greater than the sum of all elements from sequence A, and 2·(bp1 + ... + bpk) is greater than the sum of all elements from the sequence B. Also, k should be smaller or equal to because it will be to easy to find sequence P if he allowed you to select too many elements!

Mike guarantees you that a solution will always exist given the conditions described above, so please help him satisfy his curiosity!

Input

The first line contains integer n (1 ≤ n ≤ 105) — the number of elements in the sequences.

On the second line there are n space-separated integers a1, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.

On the third line there are also n space-separated integers b1, ..., bn (1 ≤ bi ≤ 109) — elements of sequence B.

Output

On the first line output an integer k which represents the size of the found subset. k should be less or equal to .

On the next line print k integers p1, p2, ..., pk (1 ≤ pi ≤ n) — the elements of sequence P. You can print the numbers in any order you want. Elements in sequence P should be distinct.

Example
Input
58 7 4 8 34 2 5 3 7
Output
3 1 4 5

  题目大意 给定两个长度为n的数列,选出不多于$\left \lfloor \frac{n}{2} \right \rfloor + 1$个互不相同的下标,使得每个数组对应下标的数的和的两倍超过它的和。

  显然贪心,我有很多稀奇古怪的想法,然后全都完美Wrong Answer。突然觉得自己可能一直用的都是假贪心,给这道题跪了。下面说正解吧。

  这个可以看成二维贪心,对于高维问题我们通常想到的是降维,再根据常用套路,降维通常用的两种方法:排序和枚举一维。

  因为这里是贪心,所以显然排序。

  题目要求还可以转化成,选择一些下标,在每个数组中,被选择数之和比剩下的数的和大。

  首先选择A[1],然后之后每两个分为一组,每组中哪个对应的B大就选哪个。如果n为偶数,再把最后一个选上。

  显然在B数组中是满足题目要求的(每组中都选了最大的,还多选了1个或2个),对于A数组,每个选择了A[i]一定大于等于下一组内选择的A[j],而且会多选1个或2个,所以A数组也满足。

Code

 /**
  * Codeforces
  * Problem#798D
  * Accepted
  * Time: 62ms
  * Memory: 4500k
  */
 #include <bits/stdc++.h>
 using namespace std;
 typedef bool boolean;

 typedef class Data {
     public:
         int id;
         int x;
         int y;
 }Data;

 int n;
 int *A, *B;
 Data *ds;

 boolean cmp(const Data &a, const Data& b) {    return a.x > b.x;    }

 inline void init() {
     scanf("%d", &n);
     A = )];
     B = )];
     ds = )];
     ; i <= n; i++)
         scanf("%d", A + i), ds[i].x = A[i], ds[i].id = i;
     ; i <= n; i++)
         scanf("%d", B + i), ds[i].y = B[i];
 }

 vector<int> buf;
 inline void solve() {
     sort(ds + , ds + n + , cmp);
     buf.push_back(ds[].id);
     ; i < n; i += )
         buf.push_back((ds[i].y > ds[i + ].y) ? (ds[i].id) : (ds[i + ].id));
     ) == )
         buf.push_back(ds[n].id);
     printf("%d\n", (signed)buf.size());
     ; i < (signed)buf.size(); i++)
         printf("%d ", buf[i]);
 }

 int main() {
     init();
     solve();
     ;
 }

Codeforces 798D Mike and distribution - 贪心的更多相关文章

  1. Codeforces 798D Mike and distribution(贪心或随机化)

    题目链接 Mike and distribution 题目意思很简单,给出$a_{i}$和$b_{i}$,我们需要在这$n$个数中挑选最多$n/2+1$个,使得挑选出来的 $p_{1}$,$p_{2} ...

  2. Codeforces 798D - Mike and distribution(二维贪心、(玄学)随机排列)

    题目链接:http://codeforces.com/problemset/problem/798/D 题目大意:从长度为n的序列A和序列B中分别选出k个下表相同的数要求,设这两个序列中k个数和分别为 ...

  3. CodeForces - 798D Mike and distribution 想法题,数学证明

    题意:给你两个数列a,b,你要输出k个下标,使得这些下标对应的a的和大于整个a数列的和的1/2.同时这些下标对应的b //题解:首先将条件换一种说法,就是要取floor(n/2)+1个数使得这些数大于 ...

  4. Codeforces 798D Mike and distribution (构造)

    题目链接 http://codeforces.com/contest/798/problem/D 题解 前几天的模拟赛,居然出这种智商题..被打爆了QAQ 这个的话,考虑只有一个序列怎么做,把所有的排 ...

  5. Codeforces 798D Mike and distribution

    题目链接 题目大意 给定两个序列a,b,要求找到不多于个下标,使得对于a,b这些下标所对应数的2倍大于所有数之和. N<=100000,所有输入大于0,保证有解. 因为明确的暗示,所以一定找个. ...

  6. 【算法系列学习】codeforces D. Mike and distribution 二维贪心

    http://codeforces.com/contest/798/problem/D http://blog.csdn.net/yasola/article/details/70477816 对于二 ...

  7. CF798D Mike and distribution 贪心

    我感觉这道题挺神的~ 假设 $a[i]=b[i]$,那么我们可以将 $a$ 降序排序,然后你发现只要你按照 $1,3,5......n$ 这么取一定是合法的. 而我们发现 $2$ 比取 $3$ 优,取 ...

  8. codeforces 798 D. Mike and distribution

    D. Mike and distribution time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  9. [CF798D]Mike and distribution_贪心

    Mike and distribution 题目链接:http://codeforces.com/problemset/problem/798/D 数据范围:略. 题解: 太难了吧这个题..... 这 ...

随机推荐

  1. Selenium基础知识(七)弹出框处理

    使用switch_to.alert方法来处理弹页面弹出的警告框 页面常见警告框种类:alert/confirm 确认框/prompt switch_to.alert().accept() switch ...

  2. Mysql重连错误

    Caused by: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: The last packet successfully rec ...

  3. Unity shader学习之屏幕后期效果之调整屏幕亮度,饱和度,对比度

    Unity的屏幕后期处理效果,使用MonoBehaviour.OnRenderImage来实现. 转载请注明出处:http://www.cnblogs.com/jietian331/p/7228063 ...

  4. Unity之fragment shader中如何获得视口空间中的坐标

    2种方法: 1. 使用 VPOS 或 WPOS语义,如: Shader "Test/ScreenPos1" { SubShader { Pass { CGPROGRAM #prag ...

  5. mysql 知识

    1.  数据库事务的四个特性及含义 数据库事务transanction正确执行的四个基本要素.ACID,原子性(Atomicity).一致性(Correspondence).隔离性(Isolation ...

  6. GameObject.Find与Transform.Find的区别

    1.GameObject.Find 函数原型: public static GameObject Find(string name); 说明:1.GameObject只能查找到active的物体 2. ...

  7. html5-新布局元素header,footer

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  8. Introduction to debugging neural networks

    http://russellsstewart.com/notes/0.html The following advice is targeted at beginners to neural netw ...

  9. jQuery事件--blur()和focus()

       blur([[data],fn]) 概述 当元素失去焦点时触发 blur 事件. 这个函数会调用执行绑定到blur事件的所有函数,包括浏览器的默认行为.可以通过返回false来防止触发浏览器的默 ...

  10. weblogic 乱码

    1.找到weblogic安装目录,当前项目配置的domain 2.找到bin下的setDomainEnv.cmd文件 3.打开文件,从文件最后搜索第一个set JAVA_OPTIONS=%JAVA_O ...