没有上司的舞会

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
 
题目描述 Description

Ural大学有N个职员,编号为1~N。他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。每个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐指数最大。但是,没有职员愿和直接上司一起与会。

输入描述 Input Description

第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0,0。

输出描述 Output Description

输出最大的快乐指数。

样例输入 Sample Input

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0

样例输出 Sample Output

5

数据范围及提示 Data Size & Hint

各个测试点1s


一个节点的父亲就是它的直接上司,没有职员愿和直接上司一起与会 就是要求节点和父节点不能同时选择,注意题目输入边的关系时输入u、v表示的是v是u的父亲。题目没有给根节点,所以我这里用边表来储存树,边读入边标记有父亲的点flag值为1,读入结束后再扫描一遍flag数组,flag值为0的节点就是根节点了,因为它没有父亲。接着我们就直接写一个函数dp根节点。

那么这个dp的递归函数该怎么写呢?我们先来想办法推出状态转移方程。

对于每个节点,我们都有取和不取两个操作。f[i][0]和f[i][1]分别表示i节点取和不取得到的最大值。虽然题目里给定点的权值范围是(-128<=Ri<=127),但是我们要首先大胆地肯定一点:f[i][0]不可能小于0,f[i][1]不可能小于i点的权值也就是dis[i]。为什么?因为我们要求最大的价值,而如果当下面的节点权值都为负数会出现“越取越小”的情形时,我们就干脆一个节点都不取,这样子取得的价值就直接为0,f[i][1]不可能小于i点的权值也是同理:取了i点的权值后,若i的儿子权值都是负数,越取越小,则干脆不取,这样f[i][1]就会变成dis[i],也不可能小于dis[i]。所以f[i][0]不可能小于0,f[i][1]不可能小于i点的权值也就是dis[i]。

注:edge[j].to存储的是i节点的儿子节点,详情可以看我的代码中边表的实现;0表示不取,1表示取。

因为这是树形dp,我们当然是从父亲递归到每一个儿子啦。对于每个节点,我们都有取和不取两个操作。如果i节点取的话,i节点的儿子节点就一定不能取,所以f[i][1]+=f[edge[j].to][0]。如果有人问我为什么f[i][1]是“+=”f[edge[j].to][0]而不是“=”,那我只能说:人家又不是只有一个儿子,你如果把i点取的值直接等于儿子不取的最大价值的话,那简直就是事故现场,你可以想想如果这么做你为什么有存储f[i][1]的必要,因为f[i][1]的值在f[edge[j].to][0]就存储了。而如果i节点不取的话,i节点的儿子就有了两种选择:取和不取。而对于这两种选择,我们当然选择更大的价值啦。所以f[i][0]+=max(f[edge[j].to][0],f[edge[j].to][1]);。

然后我再拿出一段代码分析一下,也就是核心代码:dp的函数:

void dp(int i)
{
  for (int j=head[i]; j; j=edge[j].next) {//遍历每一条以i为起点的边j。
    dp(edge[j].to);//先递归一下待会需要用到的儿子节点,你可以理解成准备dp需要用的东西。
    f[i][1]+=f[edge[j].to][0];//这里不需要用到max函数,我前面已经解释过了最大值不可能是负数,所以不需要。这里是取i点的最大价值。
    f[i][0]+=max(f[edge[j].to][0],f[edge[j].to][1]);//这是不取i点的最大价值。
  }
  f[i][1]+=dis[i];//1表示当前点要取,既然取了这个点,就要加上这个点的权值。
  return;
}

还是不懂的同学可以自己拿笔和纸模拟一下,其实我的核心代码很短的。

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
using namespace std;
int read()
{
int f=,x=; char c=getchar();
while (c>''||c<'') {if (c=='-') f=-; c=getchar();}
while (c>='' && c<='') {x=x*+c-''; c=getchar();}
return x*f;
}
int num_edge,head[],f[][],n,dis[],u,v,gen;
long long MAX=;
bool flag[];
struct Edge
{
int next;
int to;
}edge[];
void Add_edge(int from,int to)
{
edge[++num_edge].next=head[from];
edge[num_edge].to=to;
head[from]=num_edge;
}
void dp(int i)
{
for (int j=head[i]; j; j=edge[j].next) {
dp(edge[j].to);
f[i][]+=f[edge[j].to][];
f[i][]+=max(f[edge[j].to][],f[edge[j].to][]);
}
f[i][]+=dis[i];
return;
}
int main()
{
n=read();
for (int i=; i<=n; i++) dis[i]=read();
for (int i=; i<=n-;i++) {
u=read(); v=read();
Add_edge(v,u);
flag[u]=;
}
u=read();
v=read();
for (int i=; i<=n; i++)
if (flag[i]==) {
gen=i;
break;
}
dp(gen);
if (f[gen][]>f[gen][]) printf("%d\n",f[gen][]);
else printf("%d\n",f[gen][]);
return ;
}

没有上司的舞会

有问题可以直接在评论里面提问,有需要转载的请得到我的允许,否则按侵权处理。


Elena loves NiroBC forever!

没有上司的舞会|codevs1380|luoguP1352|树形DP|Elena的更多相关文章

  1. 二叉苹果树|codevs5565|luoguP2015|树形DP|Elena

    二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的 ...

  2. C++ luogu1352没有上司的舞会 from_树形DP

    luogu1352没有上司的舞会 分析(树形DP模板题): 没学树形DP的,看一下. 把该题抽象到一颗树中,设i的下属就是他的儿子,则有两种情况: 如果i参加,他的儿子就不能参加. 如果i不参加,他的 ...

  3. 树形DP 学习笔记

    树形DP学习笔记 ps: 本文内容与蓝书一致 树的重心 概念: 一颗树中的一个节点其最大子树的节点树最小 解法:对与每个节点求他儿子的\(size\) ,上方子树的节点个数为\(n-size_u\) ...

  4. CodeVS1380 没有上司的舞会 [树形DP]

    题目传送门 没有上司的舞会 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个 ...

  5. 【codevs1380】没有上司的舞会 树形dp

    题目描述 Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个快乐指数.现在有个周年庆宴会,要求与会职员的快乐指数 ...

  6. luoguP1352没有上司的舞会(树形DP)

    题目链接:https://www.luogu.org/problemnew/show/P1352 题意:给定n个结点,每个结点有一个权值,给n-1条边,n个结点构成一棵树.并且规定一个结点的父结点如果 ...

  7. 『没有上司的舞会 树形DP』

    树形DP入门 有些时候,我们需要在树形结构上进行动态规划来求解最优解. 例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子 ...

  8. [luogu]P1352 没有上司的舞会[树形DP]

    本Lowbee第一次写树形DP啊,弱...一个变量写错半天没看出来...... 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点 ...

  9. 洛谷 P1352 没有上司的舞会【树形DP】(经典)

    <题目链接> <转载于>>> > 题目描述: 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

随机推荐

  1. 使用Amalgamate将C/C++项目合并成一个.h/.c[pp]文件

    简述 C/C++开源库一般是一堆的头文件和源文件,做到声明和实现分离,减小单个模块大小,这在设计上是很好的,但是用起来稍显麻烦.在网上看到有好心人推荐了一个开源工具Amalgamate,专门用来对C/ ...

  2. Jexus 网站服务器和 ASP.NET 跨平台开发

    微软的跨平台战略 微软在过去的一年多中时间中发生了令整个 IT 行业感到惊叹的变化.这一切始于 Ballmer 的退位和 Nadella 的决心,更始于早已在微软各个基层部门蠢蠢欲动的二次创业. 以开 ...

  3. java8学习的一点总结

    最近研究了一下java8 弄了几个例子学习了一下用法: 创建了一个实体类: @Data public class Apple { private Integer id; private String ...

  4. 【Linux高级驱动】input子系统框架

    [1.input子系统框架(drivers\input)] 如何得出某个驱动所遵循的框架?    1) 通过网络搜索    2) 自己想办法跟内核代码!         2.1 定位此驱动是属于哪种类 ...

  5. Linux 下 nginx反向代理与负载均衡

    前面几篇记录下nginx的基本运功,代理服务器的访问,这里来试验下nginx的反向代理. 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给 ...

  6. android 监听动画对象后不能播放动画

    采用监听  AnimationListener 发现不能播放动画了. 解决办法: 将动画的启动方式:animation.startnow去掉,改为如下即可 view.startAnimation(an ...

  7. Java知多少(5) Java开发环境的搭建

    要进行Java开发,首先要安装JDK(Java Development Kit,Java开发工具箱). JDK 是一系列工具的集合,这些工具是编译Java源码.运行Java程序所必需的,例如JVM.基 ...

  8. debian系列下c++调用mysql, linux下面安装mysql.h文件

    mysql.h的报错还没有解决,你们不用看了,等我解决了吧还不知道什么时候 先用c吧 #include <stdio.h> #include <stdlib.h> #inclu ...

  9. 【转】WPF自定义控件与样式(5)-Calendar/DatePicker日期控件自定义样式及扩展

    一.前言 申明:WPF自定义控件与样式是一个系列文章,前后是有些关联的,但大多是按照由简到繁的顺序逐步发布的等. 本文主要内容: 日历控件Calendar自定义样式: 日期控件DatePicker自定 ...

  10. R语言reads.table 自动将字符串变成了逻辑值

    今天遇到了一个问题,文件中有一列的值为全为F, 用read.table 读取的时候,自动将F 变成了false 对于这样的转换,可以通过 colClass 参数控制 colClass 参数指定每一列的 ...