PTA 7-2 是否完全二叉搜索树(30 分) 二叉树
将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果。
输入格式:
输入第一行给出一个不超过20的正整数N
;第二行给出N
个互不相同的正整数,其间以空格分隔。
输出格式:
将输入的N
个正整数顺序插入一个初始为空的二叉搜索树。在第一行中输出结果树的层序遍历结果,数字间以1个空格分隔,行的首尾不得有多余空格。第二行输出YES
,如果该树是完全二叉树;否则输出NO
。
输入样例1:
9
38 45 42 24 58 30 67 12 51
输出样例1:
38 45 24 58 42 30 12 67 51
YES
输入样例2:
8
38 24 12 45 58 67 42 51
输出样例2:
38 45 24 58 42 12 67 51
NO
满二叉树:假设这个二叉树有n层,那么每一层的节点数都达到最大的二叉树。
完全二叉树:把最后一层去掉就是满二叉树,同时最后一层:我们假设最后一层里面如果是满的话是有n个节点,我们从左往右标号1-n,那么最后一层如果想要有节点的话,一定要按照标号顺序建立,不能隔过一个或多个标号去建立其他的节点。
所以 我们分析一下 完全二叉树的特点:我们按照层次顺序遍历这颗树的过程中,对于任意一节点x
1 》如果x 有右子树,但是却没有左子树,这肯定不是完全二叉树
2 》如果x 有左子树,但是却没有右子树,那么剩余的所有节点一定要为叶子节点
3 》如果 x 左右子树都没有,那么剩余的所有节点也要为叶子节点
判断是否是完全二叉树很简单 查看是否连续即可 用数组建树方便很多
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define pb push_back
#define fi first
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
///////////////////////////////////
#define inf 0x3f3f3f3f
#define N 1000
int a[N];
int n; void build()
{
CLR(a,-);
rep(i,,n)
{
int x;
RI(x);
int id=;
while()
{
if(a[id]==-)
{
a[id]=x;break;
}
else if(x>a[id])
{
id<<=;
}
else
id=id*+;
}
}
}
bool check()
{
int cnt=;
int flag=;
rep(i,,N)
{
if(cnt==n)break;
if(a[i]!=-)
{
cnt++;
cout<<a[i];
cout<<(cnt==n?'\n':' ');
}
else//如果中断了说明不是完全二叉树
flag=;
}
return flag;
}
int main()
{
RI(n);
build();
if(check())
printf("YES");
else printf("NO");
return ;
}
PTA 7-2 是否完全二叉搜索树(30 分) 二叉树的更多相关文章
- PTA 7-1 是否完全二叉搜索树 (30分)
PTA 7-1 是否完全二叉搜索树 (30分) 将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果. ...
- PTA 04-树4 是否同一棵二叉搜索树 (25分)
题目地址 https://pta.patest.cn/pta/test/15/exam/4/question/712 5-4 是否同一棵二叉搜索树 (25分) 给定一个插入序列就可以唯一确定一棵二 ...
- PAT 天梯赛 是否完全二叉搜索树 (30分)(二叉搜索树 数组)
将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果. 输入格式: 输入第一行给出一个不超过20的正整数 ...
- 天梯赛练习 L3-010 是否完全二叉搜索树 (30分) 数组建树模拟
题目分析: 本题的要求是将n个数依次插入一个空的二叉搜索树(左大右小,且没有重复数字),最后需要输出其层次遍历以及判断是否是完全二叉搜索树,通过观察我们发现, 如果这个树是用数组建立的,那么最后输出的 ...
- L3-010 是否完全二叉搜索树 (30分)
题解 判断一棵树是否是完全二叉树: 取队列的头,将头的左右孩子入队,循环每次判断是否为空,如果为空节点,此时退出循环. 然后检查队列中的元素是否全部为空,如果是则说明是完全二叉树,否则不是. 代码 # ...
- PTA 是否二叉搜索树 (25分)
PTA 是否二叉搜索树 (25分) 本题要求实现函数,判断给定二叉树是否二叉搜索树. 函数接口定义: bool IsBST ( BinTree T ); 其中BinTree结构定义如下: typede ...
- 7-4 是否同一棵二叉搜索树 (25分) JAVA
给定一个插入序列就可以唯一确定一棵二叉搜索树.然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到. 例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结 ...
- pta l2-4(这是二叉搜索树吗?)
题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805070971912192 题意:给定n以及n个整数,问该序列 ...
- PAT 天梯赛 是否同一棵二叉搜索树 (25分)(二叉搜索树 指针)
给定一个插入序列就可以唯一确定一棵二叉搜索树.然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到.例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果 ...
- [刷题] PTA 04-树4 是否同一棵二叉搜索树
程序: 1 #include <stdio.h> 2 #include <stdlib.h> 3 typedef struct TreeNode *Tree; 4 struct ...
随机推荐
- Java——集合
Java的集合类是一种非常有用的工具类,用于存储多个对象.它是一个容器,可以把多个对象放到里面. Java集合分三种情况: Set:无序.不可重复 List:有序.可重复 Map:具有映射关系 Col ...
- JavaScript之12306自动刷新车票[待完善]
function refresh(){ var search_btn = document.getElementById("query_ticket"); var result_t ...
- np.mat()和np.transpose
例子: import numpy as np dataSet = [] with open('/home/lai/下载/20081023025304.plt') as fr: for line in ...
- python中argparse模块用法实例详解
python中argparse模块用法实例详解 这篇文章主要介绍了python中argparse模块用法,以实例形式较为详细的分析了argparse模块解析命令行参数的使用技巧,需要的朋友可以参考下 ...
- mono修改配置
当前mono安装目录为:/home/mono,安装成功后修改配置需进入这个路径: cd /home/mono 1.修改TcpBinaryFrameManager.cs文件 cd /home/mono/ ...
- AT91RM9200---定时器简介
1.前言 系统定时器模块集成了3个不同的定时器 一个周期性间隔的定时器,用来为操作系统设置时基 一个看门狗定时器,可用于软件死锁时进行系统复位 一个实时时钟计数器用来记录流逝的时间 系统定时器时钟 这 ...
- kafka系列八、kafka消息重复和丢失的场景及解决方案分析
消息重复和丢失是kafka中很常见的问题,主要发生在以下三个阶段: 生产者阶段 broke阶段 消费者阶段 一.生产者阶段重复场景 1.根本原因 生产发送的消息没有收到正确的broke响应,导致pro ...
- 使用nginx实现浏览器跨域请求
跨域访问问题, 相信很多人都遇到过, 并且都用不同的办法去解决过. 方法有很多种, 不一一叙述了. 这里主要使用nginx反向代理来解决跨域问题. 啥是跨域? 假如你是百度开发人员, 在百度页面去请求 ...
- QL Server 高可用性(一)AlwaysOn 技术
从 SQL Server 2008 开始,微软在“高可用”.“灾难恢复”技术中使用 AlwaysOn 一词.在 SQL Server 2012 中,微软明确地打出的 AlwaysOn 招牌. SQL ...
- HTTP基础知识1
HTTP 简介 HTTP协议(HyperText Transfer Protocol,超文本传输协议)是因特网上应用最为广泛的一种网络传输协议,所有的WWW文件都必须遵守这个标准,它是基于TCP/IP ...