思路

相当神奇的费用流拆点模型
最开始我想到把交换黑色棋子看成一个流流动的过程,流从一个节点流向另一个节点就是交换两个节点,然后把一个位置拆成两个点限制流量,然后就有了这样的建图方法
S向所有初始是黑色点的入点连cap=1,cost=0的边,最后是黑色点的出点向T连一条cap=1,cost=0的边,然后对应点的出点向它八连通的点的入点连一条cap=INF,cost=1的边,每个点的入点向出点连一条cap=limit,cost=0的边
看起来很靠谱,实际是假的
因为我们刚才的方法没有考虑到一条交换路径的两个端点只交换一次并且路径上其他点都交换了两次(也就是端点和路径上的其他点没有区别)
所以可以拆成三层图。
S向每个初始黑点的mid连边,每个最终黑点的mid向T连边,相邻点连边不变,
然后懒得讲了。。。。

代码

···cpp

include

include

include

include

include

using namespace std;
struct Edge{
int u,v,cap,cost,flow;
};
const int MAXN = 1550;
const int INF = 0x3f3f3f3f;
vector edges;
vector G[MAXN];
int d[MAXN],p[MAXN],a[MAXN],vis[MAXN],s,t,n,m;
queue q;
void addedge(int u,int v,int cap,int cost){
edges.push_back((Edge){u,v,cap,cost,0});
edges.push_back((Edge){v,u,0,-cost,0});
int cnt=edges.size();
G[u].push_back(cnt-2);
G[v].push_back(cnt-1);
}
bool spfa(int &cost,int &flow){
memset(d,0x3f,sizeof(d));
memset(p,0,sizeof(p));
q.push(s);
d[s]=0;
a[s]=INF;
p[s]=0;
vis[s]=true;
while(!q.empty()){
int x=q.front();
q.pop();
vis[x]=false;
for(int i=0;i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if(e.cap>e.flow&&d[x]+e.cost<d[e.v]){
d[e.v]=d[x]+e.cost;
p[e.v]=G[x][i];
a[e.v]=min(a[x],e.cap-e.flow);
if(!vis[e.v]){
vis[e.v]=true;
q.push(e.v);
}
}
}
}
if(d[t]==INF)
return false;
flow+=a[t];
cost+=a[t]d[t];
for(int i=t;i!=s;i=edges[p[i]].u){
edges[p[i]].flow+=a[t];
edges[p[i]^1].flow-=a[t];
}
return true;
}
void MCMF(int &cost,int &flow){
cost=flow=0;
while(spfa(cost,flow));
}
inline int id(int x,int y){
return (x-1)
m+y;
}
char S[50];
int pre_map[30][30],bac_map[30][30];
int main(){
s=MAXN-2;
t=MAXN-3;
int cntb1=0,cntb2=0;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%s",S+1);
for(int j=1;j<=m;j++){
if(S[j]=='0'){
cntb1++;
addedge(s,id(i,j)+2nm,1,0);
}
pre_map[i][j]=S[j]-'0';
}
}
for(int i=1;i<=n;i++){
scanf("%s",S+1);
for(int j=1;j<=m;j++){
if(S[j]=='0'){
cntb2++;
addedge(id(i,j)+2nm,t,1,0);
}
bac_map[i][j]=S[j]-'0';
}
}
if(cntb1!=cntb2){
printf("%d\n",-1);
return 0;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
if(i!=1){//up
addedge(id(i,j)+nm,id(i-1,j),INF,1);
}
if(j!=1){//left
addedge(id(i,j)+n
m,id(i,j-1),INF,1);
}
if(i!=n){//down
addedge(id(i,j)+nm,id(i+1,j),INF,1);
}
if(j!=m){//right
addedge(id(i,j)+n
m,id(i,j+1),INF,1);
}
if(i!=1&&j!=1){//zuoshang
addedge(id(i,j)+nm,id(i-1,j-1),INF,1);
}
if(i!=n&&j!=1){//zuoxia
addedge(id(i,j)+n
m,id(i+1,j-1),INF,1);
}
if(i!=1&&j!=m){//youshang
addedge(id(i,j)+nm,id(i-1,j+1),INF,1);
}
if(i!=n&&j!=m){//youxia
addedge(id(i,j)+n
m,id(i+1,j+1),INF,1);
}
}
for(int i=1;i<=n;i++){
scanf("%s",S+1);
for(int j=1;j<=m;j++){
if(pre_map[i][j]==1&&bac_map[i][j]==0){
addedge(id(i,j),id(i,j)+2nm,(S[j]-'0'+1)/2,0);
addedge(id(i,j)+2nm,id(i,j)+nm,(S[j]-'0')/2,0);
}
if(pre_map[i][j]==0&&bac_map[i][j]==1){
addedge(id(i,j),id(i,j)+2
nm,(S[j]-'0')/2,0);
addedge(id(i,j)+2
nm,id(i,j)+nm,(S[j]-'0'+1)/2,0);
}
if(pre_map[i][j]==bac_map[i][j]){
addedge(id(i,j),id(i,j)+2nm,(S[j]-'0')/2,0);
addedge(id(i,j)+2nm,id(i,j)+n*m,(S[j]-'0')/2,0);
}
}
}
int cost=0,flow=0;
MCMF(cost,flow);
printf("%d\n",cost);
return 0;
}

···

P3159 [CQOI2012]交换棋子的更多相关文章

  1. [bzoj2668] [洛谷P3159] [cqoi2012] 交换棋子

    Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Input 第一行 ...

  2. 洛谷P3159 [CQOI2012]交换棋子

    巧妙的拆点方式,首先把1看成黑点,0看成空的,几次交换就可以看成一条路径 1)从容量上看,这条路径为1-2-2-2-2-2----2-1 2)从费用上看,这条路径每条边费用都是1 于是用一种巧妙的拆点 ...

  3. BZOJ2668: [cqoi2012]交换棋子

    题解: 可以戳这里:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 其实自己yy一下就知道这样建图的正确性了. 感觉太神奇 ...

  4. BZOJ 2668: [cqoi2012]交换棋子

    2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1112  Solved: 409[Submit][Status ...

  5. 【BZOJ2668】[cqoi2012]交换棋子 费用流

    [BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...

  6. [cqoi2012]交换棋子

      2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1334  Solved: 518[Submit][Stat ...

  7. 洛谷 P3159(BZOJ 2668)[CQOI2012]交换棋子

    有一个\(n\)行\(m\)列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第\(i\)行第\(j\)列的格子只能参与\(m[i][j]\)次交换 ...

  8. BZOJ2668:[CQOI2012]交换棋子——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2668 https://www.luogu.org/problemnew/show/P3159#sub ...

  9. BZOJ.2668.[CQOI2012]交换棋子(费用流zkw)

    题目链接 首先黑白棋子的交换等价于黑棋子在白格子图上移动,都到达指定位置. 在这假设我们知道这题用网络流做. 那么黑棋到指定位置就是一条路径,考虑怎么用流模拟出这条路径. 我们发现除了路径的起点和终点 ...

随机推荐

  1. IIS7配置rewriter

    遇到的问题就是rewriter不起效果冲IIS6迁移过来的.最后发现是Framework 4.0的原因!记录处理方式为: 一. <configSections> <section n ...

  2. jQuery选择器--:first和:last

       :first 概述 获取匹配的第一个元素    :last 概述 获取匹配的最后个元素 <!DOCTYPE html> <html> <head> <m ...

  3. python 试题归纳及答疑 更新中.....

    一.Python基础篇(80题) 1.你为什么学习Python? 一.答题思路 1.阐述 python 优缺点 2.Python应用领域说明 3.根据自身工作情况阐述为什么会使用python 1)py ...

  4. Swift 了解(3)

    类(Classes) 假设你是一个建筑师,你刚刚签了一个合同,要在一个新的小区修建20个相似的房子.在你派出建筑工队之前,你必须要画一个房子的设计图.这份设计图将会展现房子的外表和功能.把这份设计图当 ...

  5. python基础之可变数据类型与不可变数据类型

    一.什么可变数据类型和不可变数据类型 可变数据类型:value值改变,id值不变:不可变数据类型:value值改变,id值也随之改变. 二.如何确定一种数据类型是可变的还是不可变的 根据可变数据类型与 ...

  6. flask 在模板中渲染表单

    在模板中渲染表单 为了能够在模板中渲染表单,我们需要把表单类实例传入模板.首先在视图函数里实例化表单类LoginForm,然后再render_template()函数中使用关键脑子参数form将表单实 ...

  7. python GIL 全局锁,多核cpu下的多线程性能究竟如何?

    python GIL 全局锁,多核cpu下的多线程性能究竟如何?GIL全称Global Interpreter Lock GIL是什么? 首先需要明确的一点是GIL并不是Python的特性,它是在实现 ...

  8. python--表达式(运算表达式)

    运算表达式 python 的表达式包括:算术运算符,赋值运算符,比较运算符,成员运算符 算术运算符 运算符 描述 + 加 - 两个对象相加 - 减 - 得到负数或是一个数减去另一个数 * 乘 - 两个 ...

  9. Python+OpenCV图像处理(十二)—— 图像梯度

    简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...

  10. Linux:CPU使用率100%排查方法

    Linux作为一个多任务操作系统,将每个CPU的时间划分为很短的时间片,再通过调度器轮流分配给各个任务使用,因此造成多任务同时运行的错觉. CPU使用率 Linux作为一个多任务操作系统,将每个CPU ...