思路

相当神奇的费用流拆点模型
最开始我想到把交换黑色棋子看成一个流流动的过程,流从一个节点流向另一个节点就是交换两个节点,然后把一个位置拆成两个点限制流量,然后就有了这样的建图方法
S向所有初始是黑色点的入点连cap=1,cost=0的边,最后是黑色点的出点向T连一条cap=1,cost=0的边,然后对应点的出点向它八连通的点的入点连一条cap=INF,cost=1的边,每个点的入点向出点连一条cap=limit,cost=0的边
看起来很靠谱,实际是假的
因为我们刚才的方法没有考虑到一条交换路径的两个端点只交换一次并且路径上其他点都交换了两次(也就是端点和路径上的其他点没有区别)
所以可以拆成三层图。
S向每个初始黑点的mid连边,每个最终黑点的mid向T连边,相邻点连边不变,
然后懒得讲了。。。。

代码

···cpp

include

include

include

include

include

using namespace std;
struct Edge{
int u,v,cap,cost,flow;
};
const int MAXN = 1550;
const int INF = 0x3f3f3f3f;
vector edges;
vector G[MAXN];
int d[MAXN],p[MAXN],a[MAXN],vis[MAXN],s,t,n,m;
queue q;
void addedge(int u,int v,int cap,int cost){
edges.push_back((Edge){u,v,cap,cost,0});
edges.push_back((Edge){v,u,0,-cost,0});
int cnt=edges.size();
G[u].push_back(cnt-2);
G[v].push_back(cnt-1);
}
bool spfa(int &cost,int &flow){
memset(d,0x3f,sizeof(d));
memset(p,0,sizeof(p));
q.push(s);
d[s]=0;
a[s]=INF;
p[s]=0;
vis[s]=true;
while(!q.empty()){
int x=q.front();
q.pop();
vis[x]=false;
for(int i=0;i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if(e.cap>e.flow&&d[x]+e.cost<d[e.v]){
d[e.v]=d[x]+e.cost;
p[e.v]=G[x][i];
a[e.v]=min(a[x],e.cap-e.flow);
if(!vis[e.v]){
vis[e.v]=true;
q.push(e.v);
}
}
}
}
if(d[t]==INF)
return false;
flow+=a[t];
cost+=a[t]d[t];
for(int i=t;i!=s;i=edges[p[i]].u){
edges[p[i]].flow+=a[t];
edges[p[i]^1].flow-=a[t];
}
return true;
}
void MCMF(int &cost,int &flow){
cost=flow=0;
while(spfa(cost,flow));
}
inline int id(int x,int y){
return (x-1)
m+y;
}
char S[50];
int pre_map[30][30],bac_map[30][30];
int main(){
s=MAXN-2;
t=MAXN-3;
int cntb1=0,cntb2=0;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%s",S+1);
for(int j=1;j<=m;j++){
if(S[j]=='0'){
cntb1++;
addedge(s,id(i,j)+2nm,1,0);
}
pre_map[i][j]=S[j]-'0';
}
}
for(int i=1;i<=n;i++){
scanf("%s",S+1);
for(int j=1;j<=m;j++){
if(S[j]=='0'){
cntb2++;
addedge(id(i,j)+2nm,t,1,0);
}
bac_map[i][j]=S[j]-'0';
}
}
if(cntb1!=cntb2){
printf("%d\n",-1);
return 0;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
if(i!=1){//up
addedge(id(i,j)+nm,id(i-1,j),INF,1);
}
if(j!=1){//left
addedge(id(i,j)+n
m,id(i,j-1),INF,1);
}
if(i!=n){//down
addedge(id(i,j)+nm,id(i+1,j),INF,1);
}
if(j!=m){//right
addedge(id(i,j)+n
m,id(i,j+1),INF,1);
}
if(i!=1&&j!=1){//zuoshang
addedge(id(i,j)+nm,id(i-1,j-1),INF,1);
}
if(i!=n&&j!=1){//zuoxia
addedge(id(i,j)+n
m,id(i+1,j-1),INF,1);
}
if(i!=1&&j!=m){//youshang
addedge(id(i,j)+nm,id(i-1,j+1),INF,1);
}
if(i!=n&&j!=m){//youxia
addedge(id(i,j)+n
m,id(i+1,j+1),INF,1);
}
}
for(int i=1;i<=n;i++){
scanf("%s",S+1);
for(int j=1;j<=m;j++){
if(pre_map[i][j]==1&&bac_map[i][j]==0){
addedge(id(i,j),id(i,j)+2nm,(S[j]-'0'+1)/2,0);
addedge(id(i,j)+2nm,id(i,j)+nm,(S[j]-'0')/2,0);
}
if(pre_map[i][j]==0&&bac_map[i][j]==1){
addedge(id(i,j),id(i,j)+2
nm,(S[j]-'0')/2,0);
addedge(id(i,j)+2
nm,id(i,j)+nm,(S[j]-'0'+1)/2,0);
}
if(pre_map[i][j]==bac_map[i][j]){
addedge(id(i,j),id(i,j)+2nm,(S[j]-'0')/2,0);
addedge(id(i,j)+2nm,id(i,j)+n*m,(S[j]-'0')/2,0);
}
}
}
int cost=0,flow=0;
MCMF(cost,flow);
printf("%d\n",cost);
return 0;
}

···

P3159 [CQOI2012]交换棋子的更多相关文章

  1. [bzoj2668] [洛谷P3159] [cqoi2012] 交换棋子

    Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Input 第一行 ...

  2. 洛谷P3159 [CQOI2012]交换棋子

    巧妙的拆点方式,首先把1看成黑点,0看成空的,几次交换就可以看成一条路径 1)从容量上看,这条路径为1-2-2-2-2-2----2-1 2)从费用上看,这条路径每条边费用都是1 于是用一种巧妙的拆点 ...

  3. BZOJ2668: [cqoi2012]交换棋子

    题解: 可以戳这里:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 其实自己yy一下就知道这样建图的正确性了. 感觉太神奇 ...

  4. BZOJ 2668: [cqoi2012]交换棋子

    2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1112  Solved: 409[Submit][Status ...

  5. 【BZOJ2668】[cqoi2012]交换棋子 费用流

    [BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...

  6. [cqoi2012]交换棋子

      2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1334  Solved: 518[Submit][Stat ...

  7. 洛谷 P3159(BZOJ 2668)[CQOI2012]交换棋子

    有一个\(n\)行\(m\)列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第\(i\)行第\(j\)列的格子只能参与\(m[i][j]\)次交换 ...

  8. BZOJ2668:[CQOI2012]交换棋子——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2668 https://www.luogu.org/problemnew/show/P3159#sub ...

  9. BZOJ.2668.[CQOI2012]交换棋子(费用流zkw)

    题目链接 首先黑白棋子的交换等价于黑棋子在白格子图上移动,都到达指定位置. 在这假设我们知道这题用网络流做. 那么黑棋到指定位置就是一条路径,考虑怎么用流模拟出这条路径. 我们发现除了路径的起点和终点 ...

随机推荐

  1. html5 随机数函数

    function selec(low,high){var ch=high-low+1;return Math.floor(Math.random()*ch+low);}for (var i = 0; ...

  2. Hibernate,关系映射的多对一单向关联、多对一双向关联、一对一主键关联、一对一外键关联、多对多关系关联

    2018-11-10  22:27:02开始写 下图内容ORM.Hibernate介绍.hibername.cfg.xml结构: 下图内容hibernate映射文件结构介绍 下图内容hibernate ...

  3. 【2017-03-20】HTML框架,标题栏插入小图标,锚点,插入音频视频,滚动效果

    一.html框架   iframe 在网页中嵌入一个别的网页 1.格式: <iframe  src="链接地址" width="" height=&quo ...

  4. 随笔 js-----------------------------------------------------------------------------------------------------

    http://www.cnblogs.com/liuling/p/2014-4-19-04.html   redis Base64.encode($( "#byerName").v ...

  5. ID3和C4.5分类决策树算法 - 数据挖掘算法(7)

    (2017-05-18 银河统计) 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画 ...

  6. 如何使用Wisdom RESTClient定制满足您个性化需求的API文档?

    Wisdom RESTClient 支持自动化测试RESTful API,输出精美的测试报告,生成精美的RESTful API文档. 这里介绍一下如何定制个性化的RESTful API文档. 定制个性 ...

  7. vivado 连接不上板子 There is no current hw_target

    前情提要: vivado连接板子点击auto connect报错 [Labtoolstcl 44-469] There is no current hw_target. 处理步骤: 首先排除硬件问题, ...

  8. P5290 [十二省联考2019]春节十二响(堆+启发式合并)

    P5290 [十二省联考2019]春节十二响 从特殊到一般 我们先看链的情况. 我们把点$1$左右的两条子链分别扔入堆里 每次取出两个堆的最大值,把答案累加上更大的那个(另一堆为空则直接加上去). 那 ...

  9. 树莓派dhcp server

    首先安装isc-dhcp-server apt-get install isc-dhcp-server 然后编辑配置文件,选择需要开启dhcp服务器的网卡 vi /etc/default/isc-dh ...

  10. GitHub git 命令思维导图

    GitHub git 命令思维导图 拖动图片至浏览器地址栏松手,点击回车看高清大图.