(转)Awesome PyTorch List
Awesome-Pytorch-list
2018-08-10 09:25:16
This blog is copied from: https://github.com/Epsilon-Lee/Awesome-pytorch-list
Pytorch & related libraries
- pytorch : Tensors and Dynamic neural networks in Python with strong GPU acceleration.
- pytorch extras : Some extra features for pytorch.
- functional zoo : PyTorch, unlike lua torch, has autograd in it's core, so using modular structure of torch.nn modules is not necessary, one can easily allocate needed Variables and write a function that utilizes them, which is sometimes more convenient. This repo contains model definitions in this functional way, with pretrained weights for some models.
- torch-sampling : This package provides a set of transforms and data structures for sampling from in-memory or out-of-memory data.
- torchcraft-py : Python wrapper for TorchCraft, a bridge between Torch and StarCraft for AI research.
- aorun : Aorun intend to be a Keras with PyTorch as backend.
- logger : A simple logger for experiments.
- PyTorch-docset : PyTorch docset! use with Dash, Zeal, Velocity, or LovelyDocs.
- pytorch vision : Datasets, Transforms and Models specific to Computer Vision.
- pytorch text : Torch text related contents.
- convert_torch_to_pytorch : Convert torch t7 model to pytorch model and source.
- pt-styletransfer: Neural style transfer as a class in PyTorch.
- pretrained-models.pytorch: The goal of this repo is to help to reproduce research papers results.
- pytorch_fft : PyTorch wrapper for FFTs
- OpenFacePytorch: PyTorch module to use OpenFace's nn4.small2.v1.t7 model
- caffe_to_torch_to_pytorch
- ptstat: Probabilistic Programming and Statistical Inference in PyTorch
- pytorch-extension: This is a CUDA extension for PyTorch which computes the Hadamard product of two tensors.
- tensorboard-pytorch: This module saves PyTorch tensors in tensorboard format for inspection. Currently supports scalar, image, audio, histogram features in tensorboard.
- pytorch-seq2seq: A framework for sequence-to-sequence (seq2seq) models implemented in PyTorch.
- SparseConvNet: Submanifold sparse convolutional networks.
- gpytorch: GPyTorch is a Gaussian Process library, implemented using PyTorch. It is designed for creating flexible and modular Gaussian Process models with ease, so that you don't have to be an expert to use GPs.
- img_classification_pk_pytorch: Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
- tensorboard-pytorch: tensorboard for pytorch
- Convolution_LSTM_pytorch: A multi-layer convolution LSTM module
Tutorials & examples
- Practical Pytorch : Tutorials explaining different RNN models
- DeepLearningForNLPInPytorch : An IPython Notebook tutorial on deep learning, with an emphasis on Natural Language Processing.
- pytorch-tutorial : tutorial for researchers to learn deep learning with pytorch.
- pytorch-exercises : pytorch-exercises collection.
- pytorch tutorials : Various pytorch tutorials.
- pytorch examples : A repository showcasing examples of using pytorch
- pytorch practice : Some example scripts on pytorch.
- pytorch mini tutorials : Minimal tutorials for PyTorch adapted from Alec Radford's Theano tutorials.
- pytorch text classification : A simple implementation of CNN based text classification in Pytorch
- cats vs dogs : Example of network fine-tuning in pytorch for the kaggle competition Dogs vs. Cats Redux: Kernels Edition. Currently #27 (0.05074) on the leaderboard.
- convnet : This is a complete training example for Deep Convolutional Networks on various datasets (ImageNet, Cifar10, Cifar100, MNIST).
- pytorch-generative-adversarial-networks : simple generative adversarial network (GAN) using PyTorch.
- pytorch containers : This repository aims to help former Torchies more seamlessly transition to the "Containerless" world of PyTorch by providing a list of PyTorch implementations of Torch Table Layers.
- T-SNE in pytorch : t-SNE experiments in pytorch
- AAE_pytorch : Adversarial Autoencoders (with Pytorch).
- Kind_PyTorch_Tutorial: Kind PyTorch Tutorial for beginners.
- pytorch-poetry-gen: a char-RNN based on pytorch.
- pytorch-REINFORCE: PyTorch implementation of REINFORCE, This repo supports both continuous and discrete environments in OpenAI gym.
- PyTorch-Tutorial: Build your neural network easy and fast https://morvanzhou.github.io/tutorials/
- pytorch-intro: A couple of scripts to illustrate how to do CNNs and RNNs in PyTorch
- pytorch-classification: A unified framework for the image classification task on CIFAR-10/100 and ImageNet.
- pytorch_notebooks - hardmaru: Random tutorials created in NumPy and PyTorch.
Paper implementations
- google_evolution : This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al.
- pyscatwave : Fast Scattering Transform with CuPy/PyTorch,read the paper here
- scalingscattering : Scaling The Scattering Transform : Deep Hybrid Networks.
- deep-auto-punctuation : a pytorch implementation of auto-punctuation learned character by character.
- Realtime_Multi-Person_Pose_Estimation : This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here .
- PyTorch-value-iteration-networks : PyTorch implementation of the Value Iteration Networks (NIPS '16) paper
- pytorch_Highway : Highway network implemented in pytorch.
- pytorch_NEG_loss : NEG loss implemented in pytorch.
- pytorch_RVAE : Recurrent Variational Autoencoder that generates sequential data implemented in pytorch.
- pytorch_TDNN : Time Delayed NN implemented in pytorch.
- eve.pytorch : An implementation of Eve Optimizer, proposed in Imploving Stochastic Gradient Descent with Feedback, Koushik and Hayashi, 2016.
- e2e-model-learning : Task-based end-to-end model learning.
- pix2pix-pytorch : PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".
- Single Shot MultiBox Detector : A PyTorch Implementation of Single Shot MultiBox Detector.
- DiscoGAN: PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"
- official DiscoGAN implementation : Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks".
- pytorch-es : This is a PyTorch implementation of Evolution Strategies .
- piwise : Pixel-wise segmentation on VOC2012 dataset using pytorch.
- pytorch-dqn : Deep Q-Learning Network in pytorch.
- neuraltalk2-pytorch : image captioning model in pytorch(finetunable cnn in branch with_finetune)
- vnet.pytorch : A Pytorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation.
- pytorch-fcn : PyTorch implementation of Fully Convolutional Networks.
- WideResNets : WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than what is required by the official Torch implementation: https://github.com/szagoruyko/wide-residual-networks .
- pytorch_highway_networks : Highway networks implemented in PyTorch.
- pytorch-NeuCom : Pytorch implementation of DeepMind's differentiable neural computer paper.
- captionGen : Generate captions for an image using PyTorch.
- AnimeGAN : A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.
- Cnn-text classification : This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch.
- deepspeach2 : Implementation of DeepSpeech2 using Baidu Warp-CTC. Creates a network based on the DeepSpeech2 architecture, trained with the CTC activation function.
- seq2seq : This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch
- Asynchronous Advantage Actor-Critic in PyTorch : This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learning. Since PyTorch has a easy method to control shared memory within multiprocess, we can easily implement asynchronous method like A3C.
- densenet : This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Convolutional Networks by G. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. This implementation gets a CIFAR-10+ error rate of 4.77 with a 100-layer DenseNet-BC with a growth rate of 12. Their official implementation and links to many other third-party implementations are available in the liuzhuang13/DenseNet repo on GitHub.
- nninit : Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin.
- faster rcnn : This is a PyTorch implementation of Faster RCNN. This project is mainly based on py-faster-rcnn and TFFRCNN.For details about R-CNN please refer to the paper Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks by Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun.
- doomnet : PyTorch's version of Doom-net implementing some RL models in ViZDoom environment.
- flownet : Pytorch implementation of FlowNet by Dosovitskiy et al.
- sqeezenet : Implementation of Squeezenet in pytorch, #### pretrained models on CIFAR10 data to come Plan to train the model on cifar 10 and add block connections too.
- WassersteinGAN: wassersteinGAN in pytorch.
- optnet : This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch source code to reproduce the experiments in our paper OptNet: Differentiable Optimization as a Layer in Neural Networks.
- qp solver : A fast and differentiable QP solver for PyTorch. Crafted by Brandon Amos and J. Zico Kolter.
- Continuous Deep Q-Learning with Model-based Acceleration: Reimplementation of Continuous Deep Q-Learning with Model-based Acceleration.
- Learning to learn by gradient descent by gradient descent : PyTorch implementation of Learning to learn by gradient descent by gradient descent.
- fast-neural-style : pytorch implementation of fast-neural-style, The model uses the method described in Perceptual Losses for Real-Time Style Transfer and Super-Resolution along with Instance Normalization.
- PytorchNeuralStyleTransfer : Implementation of Neural Style Transfer in Pytorch.
- Fast Neural Style for Image Style Transform by Pytorch : Fast Neural Style for Image Style Transform by Pytorch .
- neural style transfer : An introduction to PyTorch through the Neural-Style algorithm (https://arxiv.org/abs/1508.06576) developed by Leon A. Gatys, Alexander S. Ecker and Matthias Bethge.
- VIN_PyTorch_Visdom : PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.
- YOLO2: YOLOv2 in PyTorch.
- attention-transfer: Attention transfer in pytorch, read the paper here.
- SVHNClassifier: A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks.
- pytorch-deform-conv: PyTorch implementation of Deformable Convolution.
- BEGAN-pytorch: PyTorch implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks.
- treelstm.pytorch : Tree LSTM implementation in PyTorch.
- AGE: Code for paper "Adversarial Generator-Encoder Networks" by Dmitry Ulyanov, Andrea Vedaldi and Victor Lempitsky which can be found here
- ResNeXt.pytorch: Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch.
- pytorch-rl: Deep Reinforcement Learning with pytorch & visdom
- Deep-Leafsnap: LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.
- pytorch-CycleGAN-and-pix2pix: PyTorch implementation for both unpaired and paired image-to-image translation.
- A3C-PyTorch:PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
- pytorch-value-iteration-networks : Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)
- PyTorch-Style-Transfer: PyTorch Implementation of Multi-style Generative Network for Real-time Transfer
- pytorch-deeplab-resnet: pytorch-deeplab-resnet-model.
- pointnet.pytorch: pytorch implementation for "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" https://arxiv.org/abs/1612.00593
- pytorch-playground: Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet).
- pytorch-dnc: Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom.
- pytorch_image_classifier: Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.
- mnist-svhn-transfer: PyTorch Implementation of CycleGAN and SGAN for Domain Transfer (Minimal).
- pytorch-yolo2: pytorch-yolo2
- dni: Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch
- wgan-gp: A pytorch implementation of Paper "Improved Training of Wasserstein GANs".
- pytorch-seq2seq-intent-parsing: Intent parsing and slot filling in PyTorch with seq2seq + attention
- pyTorch_NCE: An implementation of the Noise Contrastive Estimation algorithm for pyTorch. Working, yet not very efficient.
- molencoder: Molecular AutoEncoder in PyTorch
- GAN-weight-norm: Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"
- lgamma: Implementations of polygamma, lgamma, and beta functions for PyTorch
- bigBatch : Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"
- rl_a3c_pytorch: Reinforcement learning with implementation of A3C LSTM for Atari 2600.
- pytorch-retraining: Transfer Learning Shootout for PyTorch's model zoo (torchvision)
- nmp_qc: Neural Message Passing for Computer Vision
- grad-cam: Pytorch implementation of Grad-CAM
- pytorch-trpo: PyTorch Implementation of Trust Region Policy Optimization (TRPO)
- pytorch-explain-black-box: PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation
- vae_vpflows: Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling https://jmtomczak.github.io/deebmed.html
- relational-networks: Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks) https://arxiv.org/pdf/1706.01427.pdf
- vqa.pytorch: Visual Question Answering in Pytorch
- end-to-end-negotiator: Deal or No Deal? End-to-End Learning for Negotiation Dialogues
- odin-pytorch: Principled Detection of Out-of-Distribution Examples in Neural Networks.
- FreezeOut: Accelerate Neural Net Training by Progressively Freezing Layers.
- ARAE: Code for the paper "Adversarially Regularized Autoencoders for Generating Discrete Structures" by Zhao, Kim, Zhang, Rush and LeCun.
- forward-thinking-pytorch: Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time" https://arxiv.org/pdf/1706.02480.pdf
- context_encoder_pytorch: PyTorch Implement of Context Encoders
- attention-is-all-you-need-pytorch: A PyTorch implementation of the Transformer model in "Attention is All You Need".https://github.com/thnkim/OpenFacePytorch
- OpenFacePytorch: PyTorch module to use OpenFace's nn4.small2.v1.t7 model
- neural-combinatorial-rl-pytorch: PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. 95.pytorch-nec: PyTorch Implementation of Neural Episodic Control (NEC)
- seq2seq.pytorch: Sequence-to-Sequence learning using PyTorch
- Pytorch-Sketch-RNN: a pytorch implementation of arxiv.org/abs/1704.03477
- pytorch-pruning: PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference
- DrQA : A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.
- YellowFin_Pytorch : auto-tuning momentum SGD optimizer
- samplernn-pytorch : PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model.
- AEGeAN: Deeper DCGAN with AE stabilization
- /pytorch-SRResNet: pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802v2
- vsepp: Code for the paper "VSE++: Improved Visual Semantic Embeddings"
Blogs & Articles
- Generative Adversarial Networks (GANs) in 50 lines of code (PyTorch)
- adversarial-autoencoders-with-pytorch
- transfer learning using pytorch
Pytorch elsewhere
- the-incredible-pytorch : The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
- generative models : Collection of generative models, e.g. GAN, VAE in Tensorflow, Keras, and Pytorch. http://wiseodd.github.io
- pytorch vs tensorflow : an informative thread on reddit.
- Pytorch discussion forum
- pytorch notebook: docker-stack : A project similar to Jupyter Notebook Scientific Python Stack
- drawlikebobross: Draw like Bob Ross using the power of Neural Networks (With PyTorch)!
- pytorch-tvmisc: Totally Versatile Miscellanea for Pytorch
- pytorch-a3c-mujoco: Implement A3C for Mujoco gym envs.
- PyTorch in 5 Minutes.
- pytorch_chatbot: A Marvelous ChatBot implemented using PyTorch.
- malmo-challenge: Malmo Collaborative AI Challenge - Team Pig Catcher
Feedback: If you have any ideas or you want any other content to be added to this list, feel free to contribute.
(转)Awesome PyTorch List的更多相关文章
- Ubutnu16.04安装pytorch
1.下载Anaconda3 首先需要去Anaconda官网下载最新版本Anaconda3(https://www.continuum.io/downloads),我下载是是带有python3.6的An ...
- 解决运行pytorch程序多线程问题
当我使用pycharm运行 (https://github.com/Joyce94/cnn-text-classification-pytorch ) pytorch程序的时候,在Linux服务器 ...
- 基于pytorch实现word2vec
一.介绍 word2vec是Google于2013年推出的开源的获取词向量word2vec的工具包.它包括了一组用于word embedding的模型,这些模型通常都是用浅层(两层)神经网络训练词向量 ...
- 基于pytorch的CNN、LSTM神经网络模型调参小结
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...
- pytorch实现VAE
一.VAE的具体结构 二.VAE的pytorch实现 1加载并规范化MNIST import相关类: from __future__ import print_function import argp ...
- PyTorch教程之Training a classifier
我们已经了解了如何定义神经网络,计算损失并对网络的权重进行更新. 接下来的问题就是: 一.What about data? 通常处理图像.文本.音频或视频数据时,可以使用标准的python包将数据加载 ...
- PyTorch教程之Neural Networks
我们可以通过torch.nn package构建神经网络. 现在我们已经了解了autograd,nn基于autograd来定义模型并对他们有所区分. 一个 nn.Module模块由如下部分构成:若干层 ...
- PyTorch教程之Autograd
在PyTorch中,autograd是所有神经网络的核心内容,为Tensor所有操作提供自动求导方法. 它是一个按运行方式定义的框架,这意味着backprop是由代码的运行方式定义的. 一.Varia ...
- Linux安装pytorch的具体过程以及其中出现问题的解决办法
1.安装Anaconda 安装步骤参考了官网的说明:https://docs.anaconda.com/anaconda/install/linux.html 具体步骤如下: 首先,在官网下载地址 h ...
- Highway Networks Pytorch
导读 本文讨论了深层神经网络训练困难的原因以及如何使用Highway Networks去解决深层神经网络训练的困难,并且在pytorch上实现了Highway Networks. 一 .Highway ...
随机推荐
- pymysql 数据库操控
模块安装 pip install pymysql 执行sql语句 import pymysql #添加数据 conn = pymysql.connect(host='127.0.0.1', port= ...
- uvalive 3353 Optimal Bus Route Design
题意: 给出n个点,以及每个点到其他点的有向距离,要求设计线路使得每一个点都在一个环中,如果设计的线路拥有最小值,那么这个线路就是可选的.输出这个最小值或者说明最小线路不存在. 思路: 在DAG的最小 ...
- 文件、文件夹操作(I)
遍历一个目录下的所有文件 首先我们获取用户文档目录路径 let manager = FileManager.default let urlForDocument = manager.urls(for: ...
- react+redux+react-router+node.js 开发实时聊天App 学习记录
一.课程导学 1.React 主要解决的是UI层的问题,应用的状态需要借助Redux等状态管理. 2.前端React + antd-mobile UI组件库 + Redux 状态管理库 + Rea ...
- usdt转入转出出入金开发
usdt转入转出出入金开发 比特币协议 -> Omni 层协议 -> USDTUSDT是基于比特币omni协议的一种代币: https://omniexplorer.info/asset/ ...
- 51Nod 1069 Nim游戏 (位运算)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1069 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆 ...
- 每日linux命令学习-grep模式检索
grep模式检索指令包括grep,egrep,和fgrep,.Linux系统使用正则表达式优化文本检索,所以在此,笔者首先学习了一下正则表达式. 1. 正则表达式 正则表达式使用被称为元字符(Meta ...
- Mongo第三个参数的用法
Mongo update的用法 Update( array $criteria , array $new_object [, array $options = array() ] ) 第一个参数是条件 ...
- USB基础知识概论(版本:v0.9.2)
源: USB基础知识概论
- django图书管理系统实例
首页,其他页面全部继承首页的上半部分 点击发布图书页面 首页点击书名,跳转到图书信息界面,该界面可删除图书 项目结构 #views.py from django.shortcuts import re ...