大咖秀,注意提问环节大家的表情,深入窥探大咖的心态,很有意思。

之前有NG做访谈,现在这成了学术圈流行。

Video: https://www.youtube.com/watch?v=oCohnBbmpLA

Lecture: https://stats385.github.io/assets/lectures/bolcskei-stats385-slides.pdf

调和分析 reading list:https://www.zhihu.com/question/28661999


先提及了核方法,non-linear --> linear

Then, translation invariance.

    • Translation covariance

Deformation insensitivity

解释了一点random kenrel的validity。

这部分没获得什么启示。

CNNs in a nutshell

到底需要设计多大的网络能满足需求?这是个好问题。

四个话题

Topology reduction

    • Determine how fast the energy contained in the propagated signals (a.k.a. feature maps) decays across layers
    • Guarantee trivial null-space for feature extractor Φ
    • Specify the number of layers needed to have “most” of the input signal energy be contained in the feature vector
    • For a fixed (possibly small) depth, design CNNs that capture “most” of the input signal energy

1:09:00 / 1:35:39 左右提及的上述第三个话题有点意思。

大咖设计网络深度的理论依据原来于此。

1:12:00 / 1:35:39 左右提及的上述第四个话题,shallow network。

抛出一个问题:

Is it possible to disign a network of a certain number of layers to make sure 达到 lower bound?

浅层网咯的设计需要每层更多filters to pick out most of the input signal energy?

想起了什么?mobileNet的权衡参数!【link

  • 宽度乘数 α  :为了构建更小和更少计算量的网络,作者引入了宽度乘数 α ,作用是改变输入输出通道数,减少特征图数量,让网络变瘦。
  • 分辨率乘数 ρ :分辨率乘数用来改变输入数据层的分辨率,同样也能减少参数。

[Stats385] Lecture 03, Harmonic Analysis of Deep CNN的更多相关文章

  1. (IRCNN)Learning Deep CNN Denoiser Prior for Image Restoration-Kai Zhang

    学习深度CNN去噪先验用于图像恢复(Learning Deep CNN Denoiser Prior for Image Restoration)-Kai Zhang 代码:https://githu ...

  2. 【MIT 6.824 】分布式系统 课程笔记(二)Lecture 03 : GFS

    Lecture 03 : GFS 一.一致性 1, 弱一致性 可能会读到旧数据 2, 强一致性 读到的数据都是最新的 3, 一致性比较 强一致性对于app的写方便, 但是性能差 弱一致性有良好的性能, ...

  3. 论文解读《Learning Deep CNN Denoiser Prior for Image Restoration》

    CVPR2017的一篇论文 Learning Deep CNN Denoiser Prior for Image Restoration: 一般的,image restoration(IR)任务旨在从 ...

  4. [Stats385] Lecture 01-02, warm up with some questions

    Theories of Deep Learning 借该课程,进入战略要地的局部战斗中,采用红色字体表示值得深究的概念,以及想起的一些需要注意的地方. Lecture 01 Lecture01: De ...

  5. [Stats385] Lecture 04: Convnets from Probabilistic Perspective

    本篇围绕“深度渲染混合模型”展开. Lecture slices Lecture video Reading list A Probabilistic Framework for Deep Learn ...

  6. [Stats385] Lecture 05: Avoid the curse of dimensionality

    Lecturer 咖中咖 Tomaso A. Poggio Lecture slice Lecture video 三个基本问题: Approximation Theory: When and why ...

  7. Paper | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

    目录 故事背景 网络结构 BN和残差学习 拓展到其他任务 发表在2017 TIP. 摘要 Discriminative model learning for image denoising has b ...

  8. Learning Deep CNN Denoiser Prior for Image Restoration阅读笔记

    introduction 图像恢复目标函数一般形式: 前一项为保真项(fidelity),后一项为惩罚项,一般只与去噪有关. 基于模型的优化方法可以灵活地使用不同的退化矩阵H来处理不同的图像恢复问题, ...

  9. 本人AI知识体系导航 - AI menu

    Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习 ...

随机推荐

  1. css中display:none与visibility: hidden的区别

    display: none; 隐藏元素,不占用其本来空间------对应元素显示用的是display:block; visibility: hidden:元素隐藏,占用其本来的页面空间-------- ...

  2. Math类操作数据

    Math 类位于 java.lang 包中,包含用于执行基本数学运算的方法, Math 类的所有方法都是静态方法,所以使用该类中的方法时,可以直接使用类名.方法名,如: Math.round(); 常 ...

  3. python高级特性:切片/迭代/列表生成式/生成器

    廖雪峰老师的教程上学来的,地址:python高级特性 下面以几个具体示例演示用法: 一.切片 1.1 利用切片实现trim def trim(s): while s[:1] == " &qu ...

  4. android:Button控件

    Button 是程序用于和用户进行交互的一个重要控件,相信你对这个控件已经是非常熟悉 了,因为我们在上一章用了太多次 Button.它可配置的属性和 TextView 是差不多的,我们 可以在 act ...

  5. Github如何回退/回滚到某个版本

    当然你可以直接在命令行使用 git reset --hard <commit ID号> 或者 git reset --hard HEAD^来进行回退

  6. Android防止进程被第三方软件杀死

    http://blog.csdn.net/wangliang198901/article/details/12342845 http://stackoverflow.com/questions/385 ...

  7. cocos2dx之保存截屏图片

    http://blog.csdn.net/ganpengjin1/article/details/19088921 我们要保存当前的运行的scene的截图的话,我用到CCRenderTexture,看 ...

  8. SpringBoot中配置起动时的数据库初始化角本

    一.简介 我们使用SpringBoot + JPA时,需要程序在启动时执行数据表的初始化或者数据库记录的初始化.一般数据表的初始化可以通过在Spring Boot的application.proper ...

  9. 用 CPI 火焰图分析 Linux 性能问题

    https://yq.aliyun.com/articles/465499 用 CPI 火焰图分析 Linux 性能问题   yangoliver 2018-02-11 16:05:53 浏览1076 ...

  10. python3下载图片

    import urllib.request import socket import re import sys import os targetDir = r"E:\\DATA\常用py脚 ...