[Stats385] Lecture 03, Harmonic Analysis of Deep CNN
大咖秀,注意提问环节大家的表情,深入窥探大咖的心态,很有意思。
之前有NG做访谈,现在这成了学术圈流行。

Video: https://www.youtube.com/watch?v=oCohnBbmpLA
Lecture: https://stats385.github.io/assets/lectures/bolcskei-stats385-slides.pdf
调和分析 reading list:https://www.zhihu.com/question/28661999
先提及了核方法,non-linear --> linear
Then, translation invariance.
- Translation covariance
Deformation insensitivity
解释了一点random kenrel的validity。
这部分没获得什么启示。
CNNs in a nutshell
到底需要设计多大的网络能满足需求?这是个好问题。
四个话题
Topology reduction
- Determine how fast the energy contained in the propagated signals (a.k.a. feature maps) decays across layers
- Guarantee trivial null-space for feature extractor Φ
- Specify the number of layers needed to have “most” of the input signal energy be contained in the feature vector
- For a fixed (possibly small) depth, design CNNs that capture “most” of the input signal energy
1:09:00 / 1:35:39 左右提及的上述第三个话题有点意思。

大咖设计网络深度的理论依据原来于此。
1:12:00 / 1:35:39 左右提及的上述第四个话题,shallow network。
抛出一个问题:
Is it possible to disign a network of a certain number of layers to make sure 达到 lower bound?
浅层网咯的设计需要每层更多filters to pick out most of the input signal energy?
想起了什么?mobileNet的权衡参数!【link】
- 宽度乘数 α :为了构建更小和更少计算量的网络,作者引入了宽度乘数 α ,作用是改变输入输出通道数,减少特征图数量,让网络变瘦。
- 分辨率乘数 ρ :分辨率乘数用来改变输入数据层的分辨率,同样也能减少参数。
[Stats385] Lecture 03, Harmonic Analysis of Deep CNN的更多相关文章
- (IRCNN)Learning Deep CNN Denoiser Prior for Image Restoration-Kai Zhang
学习深度CNN去噪先验用于图像恢复(Learning Deep CNN Denoiser Prior for Image Restoration)-Kai Zhang 代码:https://githu ...
- 【MIT 6.824 】分布式系统 课程笔记(二)Lecture 03 : GFS
Lecture 03 : GFS 一.一致性 1, 弱一致性 可能会读到旧数据 2, 强一致性 读到的数据都是最新的 3, 一致性比较 强一致性对于app的写方便, 但是性能差 弱一致性有良好的性能, ...
- 论文解读《Learning Deep CNN Denoiser Prior for Image Restoration》
CVPR2017的一篇论文 Learning Deep CNN Denoiser Prior for Image Restoration: 一般的,image restoration(IR)任务旨在从 ...
- [Stats385] Lecture 01-02, warm up with some questions
Theories of Deep Learning 借该课程,进入战略要地的局部战斗中,采用红色字体表示值得深究的概念,以及想起的一些需要注意的地方. Lecture 01 Lecture01: De ...
- [Stats385] Lecture 04: Convnets from Probabilistic Perspective
本篇围绕“深度渲染混合模型”展开. Lecture slices Lecture video Reading list A Probabilistic Framework for Deep Learn ...
- [Stats385] Lecture 05: Avoid the curse of dimensionality
Lecturer 咖中咖 Tomaso A. Poggio Lecture slice Lecture video 三个基本问题: Approximation Theory: When and why ...
- Paper | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
目录 故事背景 网络结构 BN和残差学习 拓展到其他任务 发表在2017 TIP. 摘要 Discriminative model learning for image denoising has b ...
- Learning Deep CNN Denoiser Prior for Image Restoration阅读笔记
introduction 图像恢复目标函数一般形式: 前一项为保真项(fidelity),后一项为惩罚项,一般只与去噪有关. 基于模型的优化方法可以灵活地使用不同的退化矩阵H来处理不同的图像恢复问题, ...
- 本人AI知识体系导航 - AI menu
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯 徐亦达老板 Dirichlet Process 学习 ...
随机推荐
- Python基础语法-基本数据类型
此文档解决以下问题: 一.Python中数值数据类型——整型(int).浮点型(float).布尔型(bool).复数(complex) 1.float()函数的运用 2.int()函数的运用 3.t ...
- [Axure RP] – 鼠标滑入按钮时自动下拉表单的设计示例
转:http://blog.qdac.cc/?p=2197 Axure RP 是个好东东呀,大大方便了程序员与客户之间的前期调研时的交流.不过有一些控制并没有鼠标移入和移出的操作,比如 HTML 按钮 ...
- 奇怪吸引子---Lorenz
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 关于#progma comment 中库文件相对路径问题
最近做一个验证程序的对话框编程,因为里面要要用到静态链接库,所以就稍微的学习了下静态链接库知识,学习的过程中感觉到了自己所了解的东西实在是少的可怜,更加坚定了自己要更加上进的决心,要把以前所丢掉的都给 ...
- [leetcode]Decode Ways @ Python
原题地址:https://oj.leetcode.com/problems/decode-ways/ 题意: A message containing letters from A-Z is bein ...
- web打印控件Lodop轻松输出清晰的图表和条码
一.仅用两行语句实现极其复杂的图表打印.类似如下两句: LODOP.ADD_PRINT_CHART(0,0,400,400,5,document.getElementByI d('table001') ...
- (原)Ring loss Convex Feature Normalization for Face Recognition
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8858998.html 论文: Ring loss: Convex Feature Normalizat ...
- 编写SHELL脚本--编写简单脚本
1.简单脚本文件hello.sh,内容如下 #!/bin/bash pwd ls -al 执行脚本:bash hello.sh 或者使用root命令: ./hello.sh 2.接受用户参数 $0 ...
- 转 $(document).ready()与window.onload的区别
$(document).ready()和window.onload在表单上看都是页面加载时我们就去执行一个函数或动作,但是在具体的细节上$(document).ready()和window.onloa ...
- C#:CeF遇到的问题
2.CSharp与JS交互问题: 1)在 继承CefRenderProcessHandler的子类中重载OnWebKitInitialized()函数,注册JS类 2)在 继承CefApp的子类中创建 ...