bzoj千题计划302:bzoj3160: 万径人踪灭
https://www.lydsy.com/JudgeOnline/problem.php?id=3160
不连续的回文串数量=所有的回文序列数量-连续的回文子串
连续的回文子串:
manacher 得到的以i为中心的连续回文串数量=以i为中心的最长回文半径长度
所有的回文序列:
将a看做1,b看做0,自己跟自己做一遍fft
得到的a[i]就是以i/2为中心的由a构成的最长回文序列长度
将a看做0,b看做1,自己跟自己做一遍fft
得到的b[i]就是以i/2为中心的由b构成的最长回文序列长度
因为可以不连续,所以每一对以i为中心的对称位置要么同时选,要么同时不选
所以以i为中心的回文序列数量=2^(f[i]/2 [上取整])-1
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std; const int N=(<<)+; const double pi=acos(-); const int mod=1e9+; char s[N];
int n; struct Complex
{
double x,y;
Complex(double x_=,double y_=):x(x_),y(y_){}
Complex operator + (Complex P)
{
return Complex(x+P.x,y+P.y);
}
Complex operator - (Complex P)
{
return Complex(x-P.x,y-P.y);
}
Complex operator * (Complex P)
{
return Complex(x*P.x-y*P.y,x*P.y+y*P.x);
}
};
typedef Complex E; E a[N],b[N];
int rev[N];
int f[N]; char t[N];
int p[N]; int Pow(int a,int b)
{
int res=;
for(;b;b>>=,a=1LL*a*a%mod)
if(b&) res=1LL*res*a%mod;
return res;
} void fft(E *a,int len,int tag)
{
for(int i=;i<len;++i)
if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=;i<len;i<<=)
{
E wn(cos(pi/i),tag*sin(pi/i));
for(int p=i<<,j=;j<len;j+=p)
{
E w(,);
for(int k=;k<i;++k,w=w*wn)
{
E x=a[j+k],y=a[j+k+i]*w;
a[j+k]=x+y; a[j+k+i]=x-y;
}
}
}
if(tag==-)
{
for(int i=;i<len;++i) a[i].x=(a[i].x+0.5)/len;
}
} int solve_all()
{
for(int i=;i<n;++i)
if(s[i]=='a') a[i].x+=; else b[i].x=;
int num=n*-,len=,bit=;
while(len<num) len<<=,bit++;
for(int i=;i<len;++i) rev[i]=(rev[i>>]>>)|((i&)<<bit-);
fft(a,len,);
for(int i=;i<len;++i) a[i]=a[i]*a[i];
fft(a,len,-);
fft(b,len,);
for(int i=;i<len;++i) b[i]=b[i]*b[i];
fft(b,len,-);
for(int i=;i<len;++i) f[i]=a[i].x+b[i].x;
int sum=;
for(int i=;i<len;++i)
{
sum+=Pow(,f[i]+>>)-;
sum-=sum>=mod ? mod : ;
}
return sum;
} void manacher(int m)
{
int id=,pos=,x=;
for(int i=;i<=m;++i)
{
if(pos>i) x=min(p[id*-i],pos-i);
else x=;
while(t[i-x]==t[i+x]) x++;
if(i+x>pos) pos=i+x,id=i;
p[i]=x;
}
} int solve_continuous()
{
int m=;
t[m]='!';
for(int i=;i<n;++i)
{
t[++m]='#';
t[++m]=s[i];
}
t[++m]='#';
t[m+]='@';
manacher(m);
int sum=;
for(int i=;i<=m;++i)
{
sum+=p[i]>>;
sum-=sum>=mod ? mod : ;
}
return sum;
} int main()
{
scanf("%s",s);
n=strlen(s);
int t1=solve_all();
int t2=solve_continuous();
printf("%d",(t1-t2+mod)%mod);
}
bzoj千题计划302:bzoj3160: 万径人踪灭的更多相关文章
- bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
- bzoj千题计划196:bzoj4826: [Hnoi2017]影魔
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...
- bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪
http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...
- bzoj千题计划177:bzoj1858: [Scoi2010]序列操作
http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...
- bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)
https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...
- bzoj千题计划304:bzoj3676: [Apio2014]回文串(回文自动机)
https://www.lydsy.com/JudgeOnline/problem.php?id=3676 回文自动机模板题 4年前的APIO如今竟沦为模板,,,╮(╯▽╰)╭,唉 #include& ...
- bzoj千题计划292:bzoj2244: [SDOI2011]拦截导弹
http://www.lydsy.com/JudgeOnline/problem.php?id=2244 每枚导弹成功拦截的概率 = 包含它的最长上升子序列个数/最长上升子序列总个数 pre_len ...
- bzoj千题计划278:bzoj4590: [Shoi2015]自动刷题机
http://www.lydsy.com/JudgeOnline/problem.php?id=4590 二分 这么道水题 没long long WA了两发,没判-1WA了一发,二分写错WA了一发 最 ...
- bzoj千题计划250:bzoj3670: [Noi2014]动物园
http://www.lydsy.com/JudgeOnline/problem.php?id=3670 法一:KMP+st表 抽离nxt数组,构成一棵树 若nxt[i]=j,则i作为j的子节点 那么 ...
随机推荐
- Windows命令行下如何使用批处理异步打开一个浏览器进程
Browse.bat @echo off if '%1'=='-c' ( start /d "C:\Program Files\Google\Chrome\Application\" ...
- Jira 自定义工作流
一.添加修改工作流 打开 设置--问题--工作流 复制一个工作流,然后进去编辑页面 添加状态 增加转换动作 切换到文本,设置跳转过程中的事件 针对Stop Progress事件,修改跳转界面(界面需先 ...
- 设计模式笔记:策略模式(Strategy)
1. 策略模式简介 1.1 定义 策略是为达到某一目的而采取的手段或方法,策略模式的本质是目标与手段的分离,手段不同而最终达成的目标一致.客户只关心目标而不在意具体的实现方法,实现方法要根据具体的环境 ...
- chapter4 module and port
如果模块和外界没有交换信号,则可以没有端口列表. 端口隐含声明为wire,如果输出端口需要保存数值,则必须显式声明为reg,如需要保持数值知道下一个时钟边沿
- codeforces580C
Kefa and Park CodeForces - 580C 一棵以1为根的树,树上有些点是红的.一个叶子是合法的当且仅当从根到它的路径上出现的连续红点个数不超过m.求有多少个叶子是合法的.Inpu ...
- Layui_1.0.9_分页实例_Java
一.实体 package com.ebd.application.modules.taskManage.pojo; import com.ebd.application.common.Base.Bas ...
- python系列-2 正则表达式资料
- python构建bp神经网络_曲线拟合(一个隐藏层)__2.代码实现
IDE:jupyter 抽象程度可能不是那么高,以后再优化. 理论和代码实现的差距还是挺大的 数据集请查看 python构建bp神经网络(一个隐藏层)__1.数据可视化 部分代码预览 git上传.ip ...
- 【BZOJ2245】[SDOI2011]工作安排(费用流)
[BZOJ2245][SDOI2011]工作安排(费用流) 题面 BZOJ 洛谷 题解 裸的费用流吧. 不需要拆点,只需要连边就好了,保证了\(W_j<W_{j+1}\). #include&l ...
- py3+requests+re+urllib,爬取并下载不得姐视频
实现原理及思路请参考我的另外几篇爬虫实践博客 py3+urllib+bs4+反爬,20+行代码教你爬取豆瓣妹子图:http://www.cnblogs.com/UncleYong/p/6892688. ...