LIS与LCS的nlogn解法
LIS(nlogn)
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=1e5+;
int a[maxn];
int n;
int lis[maxn];
int len=;
int find(int x){
int l=,r=len,m;
while(l<r){
m=l+(r-l)/;
if(lis[m]>=a[x]){//这里若去掉等号即为 非严格递增序列
r=m;
}
else{
l=m+;
}
}
return l;
}
int main(void){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
lis[]=a[];
for(int i=;i<=n;i++){
if(a[i]>lis[len]){
lis[++len]=a[i];
}
else{
int pos=find(i);
lis[pos]=a[i];
}
}
printf("%d",len);
return ;
}
LCS(nlogn)
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int maxn=1e6+;
int n,len=;
int lis[maxn];
int a[maxn];
int b[maxn];
int loc[maxn];
int find(int x){
int l=,r=len,m;
while(l<r){
m=l+(r-l)/;
//if(lis[m]>=b[x]){//智障错误,找了那么久。。
if(lis[m]>=x){
r=m;
}
else l=m+;
}
return l;
}
int main(void){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=n;i++){
scanf("%d",&b[i]);
loc[b[i]]=i;
}
for(int i=;i<=n;i++){
b[i]=loc[a[i]];
}
// for(int i=1;i<=n;i++)printf("%d",b[i]) ;//
// printf("\n");
if(n!=)lis[++len]=b[];
for(int i=;i<=n;i++){
if(b[i]>lis[len]){
lis[++len]=b[i];
}
else{
int pos=find(b[i]);
lis[pos]=b[i];
}
}
printf("%d",len);
return ;
}
LIS与LCS的nlogn解法的更多相关文章
- LIS LCS n^2和nlogn解法 以及LCIS
首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由 ...
- LIS和LCS LCIS
首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由 ...
- 关于LIS和LCS问题的o(nlogn)解法
o(n^2)解法就不赘述了,直接解释o(nlogn)解法 LIS最长递增子序列: 先明确一个结论:在长度最大为len的递增序列里若末尾元素越小,该递增序列越容易和后面的子序列构造出一个更长的递增子序列 ...
- O(nlogn)LIS及LCS算法
morestep学长出题,考验我们,第二题裸题但是数据范围令人无奈,考试失利之后,刻意去学习了下优化的算法 一.O(nlogn)的LIS(最长上升子序列) 设当前已经求出的最长上升子序列长度为len. ...
- LCS 的 NlogN作法
这个算法其实是因为LIS有NlogN的作法,把LCS转化为了LIS来做. 对于序列A{},B{},我们可以记录下来B中的每个元素在A中出现的位置,按顺序保存在一个新序列当中, 如果有多个位置按倒序写, ...
- 最长上升子序列(LIS)长度的O(nlogn)算法
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素 ...
- HDU - 1160 FatMouse's Speed 动态规划LIS,路径还原与nlogn优化
HDU - 1160 给一些老鼠的体重和速度 要求对老鼠进行重排列,并找出一个最长的子序列,体重严格递增,速度严格递减 并输出一种方案 原题等于定义一个偏序关系 $(a,b)<(c.d)$ 当且 ...
- UVa 111 History Grading (简单DP,LIS或LCS)
题意:题意就是坑,看不大懂么,结果就做不对,如果看懂了就so easy了,给定n个事件,注意的是, 它给的是第i个事件发生在第多少位,并不是像我们想的,第i位是哪个事件,举个例子吧,4 2 3 1, ...
- DP---DAG、背包、LIS、LCS
DP是真的难啊,感觉始终不入门路,还是太弱了┭┮﹏┭┮ DAG上的DP 一般而言,题目中如果存在明显的严格偏序关系,并且求依靠此关系的最大/最小值,那么考虑是求DAG上的最短路或者是最长路.(据说 ...
随机推荐
- MaLoc: a practical magnetic fingerprinting approach to indoor localization using smartphones
https://www.indooratlas.com/ MaLoc: a practical magnetic fingerprinting approach to indoor localizat ...
- cocos2d-js添加百度appx的插屏广告(通过jsb反射机制)
本来一直用的anysdk接入广告,结果从前几天开始,百度商店的审核总是通不过,结果一问才知道:要上传到百度商店就必须要用百度的appx(真的是各种坑,我们这些个人开发者迟早要被你们大公司玩死),没办法 ...
- Pentaho BIServer Community Edtion 6.1 使用教程 第四篇 安装和使用Saiku 插件 进行 OLAP
OLAP(On-Line Analytical Processing,联机分析处理)是一个使分析师.管理者和执行者从原始数据中用来快速.一致.交互访问的一种软件技术,从而真实的反映企业的数据情况.OL ...
- svn 出现冲突时可以使用 meld . 命令合并。 而git的冲突合并详见内容
1.可以在任意目录使用 git mergetool --tool-help 查看 git 所支持的merge tools. 2.可以使用如下配置去设置merge tool 和 diff tool ...
- C++三种继承方式
一.三种继承方式 继承方式不同,第一个不同是的是派生类继承基类后,各成员属性发生变化.第二个不同是派生类的对象能访问基类中哪些成员发生变化.表格中红色标注.
- OSGI简介(转)
原文地址 目前,业内关于OSGI技术的学习资源或者技术文档还是很少的.我在某宝网搜索了一下“OSGI”的书籍,结果倒是有,但是种类少的可怜,而且几乎没有人购买.因为工作的原因我需要学习OSGI,所以我 ...
- opencv操作相机相关函数
1.基本操作 capture = cv2.VideoCapture(0) ret, image = capture.read() cv2.imwrite("photo.jpg", ...
- 4.Web工程师的开发工具箱
第四章 效率工具ShadowSocks window代理服务器FalconProxy chrome代理服务器stackoverflow.com Stack Overflow是一个与程序相关的IT技术问 ...
- 用vector代替实现二维数组
vector可以用来模拟数组,当然也可以用来模拟二维数组: 定义如:vector<int>a[100]; 相当于定义了一个100行的数组,当每行的大小是不确定的 模板应用如下: #in ...
- mooc_java Socket
Socket通信,TCP协议是面向连接,可靠的,有序的,以字节流的方式发送数据:基于TCP协议实现网络通信的类客户端的Socket类 服务器端的ServerSocket类 -------------- ...