直接看CDQ在2008年的论文吧.

个人认为她的论文有两个不明确的地方, 这里补充一下: 首先是轮廓的概念. 我们在进行插头DP时, 是从上往下, 从左往右逐个格子进行的, 已经处理的格子与未经处理的格子之间的分界线叫做轮廓线. 因此每个时刻轮廓线的长度都为列数加一. 每次处理下一个格子时, 有且仅有两条轮廓线会变动.

至于什么是插头, 这个很好理解, 就是从格子里面连出来的线就叫做插头. 不难看出, 在本题中, 一个不可选的格子没有插头; 一个可选的格子有且仅有两个插头. 穿过轮廓线的插头叫做轮廓线上的插头.

剩下的自己看即可.

考虑如何DP, 根据论文的描述, 我们发现轮廓线上的插头可以被看作是一个括号序列; 一个合法的状态要求轮廓线也是合法的. 同时为了限制只能存在一条路径, 我们需要在代码中加以体现.

#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std;
const int N = 15, M = 15, SZ = (int)3e5, STT = 1594323;
int n, m;
char s[N][M];
int pw[M], enc[STT], dec[SZ], tp; // 分别表示加密和解密
long long f[SZ], g[SZ];
inline int check(int stt)
{
int cnt = 0;
for(int i = 0; i < m + 1; ++ i)
{
if(stt / pw[i] % 3 == 1) ++ cnt; else if(stt / pw[i] % 3 == 2) -- cnt;
if(cnt < 0) return 0;
}
return ! cnt;
}
inline void initialize()
{
pw[0] = 1; for(int i = 1; i <= m + 1; ++ i) pw[i] = pw[i - 1] * 3;
tp = 0;
for(int i = 0; i < pw[m + 1]; ++ i) if(check(i)) enc[i] = tp, dec[tp ++] = i;
}
inline int get(int stt, int pos) {return stt / pw[pos] % 3;}
int main()
{ #ifndef ONLINE_JUDGE freopen("ural1519.in", "r", stdin);
freopen("ural1519.out", "w", stdout); #endif int lstX = -1, lstY = -1;
scanf("%d %d\n", &n, &m); for(int i = 0; i < n; ++ i) scanf("%s", s[i]);
for(int i = 0; i < n; ++ i) for(int j = 0; j < m; ++ j) if(s[i][j] == '.') lstX = i, lstY = j;
initialize();
memset(g, 0, sizeof(g)); g[enc[0]] = 1;
for(int i = 0; i < n; ++ i)
{
for(int j = 0; j < m; ++ j)
{
swap(f, g); memset(g, 0, sizeof(g));
if(s[i][j] == '*')
{
for(int k = 0; k < tp; ++ k) if(! get(dec[k], j) && ! get(dec[k], j + 1)) g[k] = f[k];
continue;
}
else for(int k = 0; k < tp; ++ k) if(f[k])
{
int x = get(dec[k], j), y = get(dec[k], j + 1);
if(! x && ! y) g[enc[dec[k] + pw[j] + pw[j + 1] * 2]] += f[k];
else if(! x ^ ! y)
{
g[k] += f[k];
g[enc[dec[k] + (y - x) * pw[j] + (x - y) * pw[j + 1]]] += f[k];
}
else if(x == 1 && y == 1)
{
int p = j + 1, cnt = 0;
for(; p <= m; ++ p)
{
if(get(dec[k], p) == 1) ++ cnt; else if(get(dec[k], p) == 2) -- cnt;
if(! cnt) break;
}
g[enc[dec[k] - pw[j] - pw[j + 1] - pw[p]]] += f[k];
}
else if(x == 2 && y == 2)
{
int p = j, cnt = 0;
for(; ~ p; -- p)
{
if(get(dec[k], p) == 2) ++ cnt; else if(get(dec[k], p) == 1) -- cnt;
if(! cnt) break;
}
g[enc[dec[k] - 2 * pw[j] - 2 * pw[j + 1] + pw[p]]] += f[k];
}
else if(x == 1 && y == 2 && i == lstX && j == lstY) g[enc[dec[k] - pw[j] - 2 * pw[j + 1]]] += f[k];
// 这里就是限制只能存在一条路径的关键
else if(x == 2 && y == 1) g[enc[dec[k] - 2 * pw[j] - pw[j + 1]]] += f[k];
}
}
swap(f, g); memset(g, 0, sizeof(g));
for(int j = 0; j < tp && dec[j] < pw[m]; ++ j) g[enc[dec[j] * 3]] += f[j];
}
printf("%lld\n", f[enc[0]]);
}

ural 1519 fomular 1 既插头DP学习笔记的更多相关文章

  1. 【BZOJ1814】Ural 1519 Formula 1 (插头dp)

    [BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...

  2. HDU 1693 Eat the Trees(插头DP、棋盘哈密顿回路数)+ URAL 1519 Formula 1(插头DP、棋盘哈密顿单回路数)

    插头DP基础题的样子...输入N,M<=11,以及N*M的01矩阵,0(1)表示有(无)障碍物.输出哈密顿回路(可以多回路)方案数... 看了个ppt,画了下图...感觉还是挺有效的... 参考 ...

  3. ural 1519 Formula 1(插头dp)

    1519. Formula 1 @ Timus Online Judge 干了一天啊!!!插头DP入门. 代码如下: #include <cstdio> #include <cstr ...

  4. bzoj1814 Ural 1519 Formula 1(插头DP)

    对插头DP的理解还不是很透彻. 先说一下肤浅的理解吧. 插头DP使用范围:指数级复杂度,且适用于解决网格图连通性问题,如哈密顿回路等问题.插头一般指每相邻2个网格的接口. 题目难度:一般不可做. 使用 ...

  5. URAL 1519 Formula 1(插头DP,入门题)

    Description Background Regardless of the fact, that Vologda could not get rights to hold the Winter ...

  6. URAL 1519 Formula 1 (插头DP,常规)

    题意:给一个n*m的矩阵,格子中是'*'则是障碍格子,不允许进入,其他格子都是必走的格子,所走格子形成一条哈密顿回路,问有多少种走法? 思路: 本来是很基础的题,顿时不知道进入了哪个坑.这篇插头DP的 ...

  7. 插头DP讲解+[BZOJ1814]:Ural 1519 Formula 1(插头DP)

    1.什么是插头$DP$? 插头$DP$是$CDQ$大佬在$2008$年的论文中提出的,是基于状压$D$P的一种更高级的$DP$多用于处理联通问题(路径问题,简单回路问题,多回路问题,广义回路问题,生成 ...

  8. 插头DP学习笔记——从入门到……????

    我们今天来学习插头DP??? BZOJ 2595:[Wc2008]游览计划 Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该 ...

  9. 插头DP学习笔记

    插头DP(我也不知道该怎么定义...)是一种类似于洛谷题目([模板]插头DP)的题目 题目特征为: 在棋盘上 某一维的数据范围很小 完全铺满 计数问题 直接看题吧. [模板]插头DP 给出n*m的方格 ...

随机推荐

  1. OpenCV学习笔记(十) 直方图操作

    直方图计算 直方图可以统计的不仅仅是颜色灰度, 它可以统计任何图像特征 (如 梯度, 方向等等).直方图的一些具体细节: dims: 需要统计的特征的数目, 在上例中, dims = 1 因为我们仅仅 ...

  2. Azure Active Directory中的特权身份管理如何运作?

    [TechTarget中国原创] 用户权限不是平等的.有些用户需要有大量权利和特权——通常这些都是管理员.企业在允许特权用户进行管理以及支持活动时,还需要意识到特权用户也有可能犯错.他们会犯错.他们可 ...

  3. 【Luogu P1120】小木棍

    题目: 乔治有一些同样长的小木棍,他把这些木棍随意砍成几段,直到每段的长都不超过$50$.现在,他想把小木棍拼接成原来的样子,但是却忘记了自己开始时有多少根木棍和它们的长度.给出每段小木棍的长度,编程 ...

  4. Python 3.6 性能测试框架Locust安装及使用

    背景 Python3.6 性能测试框架Locust的搭建与使用 基础 python版本:python3.6 开发工具:pycharm Locust的安装与配置 点击“File”→“setting” 点 ...

  5. Android TextWatcher的使用方法(监听ExitText的方法)

    我做了一个查询单词的简单app, 当在EditText中输入单词的时候,点击lookup,则在TextView区域显示出该单词的意思,当EditText中没有任何字符时,显示"word de ...

  6. python-侦测系统

    大概就是这样 要求 告警需要一定之间内出现多次 然后才报警一次 如果恢复 必须发送恢复的信息

  7. Leetcode 617.合并二叉树

    合并二叉树 给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠. 你需要将他们合并为一个新的二叉树.合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新 ...

  8. 链表的问题,ListNode问题

    算法面试,有关ListNode的问题 class ListNode{ ListNode *next; int val; ListNode(int x): val(x){}}; 在面试的时候,怎么快速想 ...

  9. 2015暑假训练(UVALive 5983 - 5992)线段树离线处理+dp

    A: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=83690#problem/A 题意:N*M的格子,从左上走到右下,要求在每个点的权值 ...

  10. [USACO12Jan][luogu3041] Video Game Combos [AC自动机+dp]

    题面 传送门 思路 首先,有一个非常显然的思路就是dp: 设$dp[i][j]$表示前i个字符,最后一个为j 然后发现这个东西有后效性 改!设$dp[i][j]$代表前i个字符,最后15个的状态为j( ...