题目

最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间。Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长。 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间。 具体地说,就是要求无向图中,两对点间最短路的最长公共路径。

输入格式

第一行:两个整数N和M(含义如题目描述)。 第二行:四个整数x1、y1、x2、y2(1 ≤ x1 ≤ N,1 ≤ y1 ≤ N,1 ≤ x2 ≤ N,1 ≤ ≤ N),分别表示Elaxia的宿舍和实验室及w**的宿舍和实验室的标号(两对点分别 x1,y1和x2,y2)。 接下来M行:每行三个整数,u、v、l(1 ≤ u ≤ N,1 ≤ v ≤ N,1 ≤ l ≤ 10000),表 u和v之间有一条路,经过这条路所需要的时间为l。 出出出格格格式式式::: 一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)。

输出格式

一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)

输入样例

9 10

1 6 7 8

1 2 1

2 5 2

2 3 3

3 4 2

3 9 5

4 5 3

4 6 4

4 7 2

5 8 1

7 9 1

输出样例

3

提示

对于30%的数据,N ≤ 100;

对于60%的数据,N ≤ 1000;

对于100%的数据,N ≤ 1500,输入数据保证没有重边和自环。

题解

最后的路径为公共的最短路,所以我们先将第一对点的所有最短路边建成一个新的拓扑图

然后就可以在新图上dp了

设\(f[i]\)为第一对点走到\(i\)时的最大公共最短路长

显然\(f[i] = max{f[j] + edge.w}\)【\(j\)为\(i\)拓扑图中的前驱点且i-j这条边在第二对点的最短路上】

#include<iostream>
#include<cmath>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1505,maxm = 3000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int from,to,nxt,w,f;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){u,v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){v,u,h[v],w}; h[v] = ne++;
}
int n,m,S1,T1,S2,T2;
int d[4][maxn],vis[maxn];
struct node{int u,d;};
inline bool operator <(const node& a,const node& b){return a.d > b.d;}
priority_queue<node> q;
void dijkstra(int S,int p){
for (int i = 1; i <= n; i++) d[p][i] = INF,vis[i] = false;
d[p][S] = 0;
node u;
q.push((node){S,d[p][S]});
while (!q.empty()){
u = q.top(); q.pop();
if (vis[u.u]) continue;
vis[u.u] = true;
Redge(u.u) if (!vis[to = ed[k].to] && d[p][to] > d[p][u.u] + ed[k].w){
d[p][to] = d[p][u.u] + ed[k].w;
q.push((node){to,d[p][to]});
}
}
}
int de[maxn],f[maxn];
queue<int> Q;
void solve(){
dijkstra(S1,0); dijkstra(T1,1);
dijkstra(S2,2); dijkstra(T2,3);
for (int k = 2; k < ne; k++)
if (d[0][ed[k].from] + ed[k].w + d[1][ed[k].to] == d[0][T1])
ed[k].f = true,de[ed[k].to]++;
Q.push(S1);
int u;
while (!Q.empty()){
u = Q.front(); Q.pop();
Redge(u) if (ed[k].f){
if (d[2][u] + ed[k].w + d[3][to = ed[k].to] == d[2][T2] || d[3][u] + ed[k].w + d[2][to = ed[k].to] == d[2][T2])
f[to] = max(f[to],f[u] + ed[k].w);
if (!(--de[to])) Q.push(to);
}
}
int ans = 0;
for (int i = 1; i <= n; i++) ans = max(ans,f[i]);
printf("%d\n",ans);
}
int main(){
n = read(); m = read();
S1 = read(); T1 = read(); S2 = read(); T2 = read();
int a,b,w;
for (int i = 1; i <= m; i++){
a = read(); b = read(); w = read();
build(a,b,w);
}
solve();
return 0;
}

BZOJ1880 [Sdoi2009]Elaxia的路线 【最短路 + dp】的更多相关文章

  1. 【BZOJ1880】[Sdoi2009]Elaxia的路线 最短路+DP

    [BZOJ1880][Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起 ...

  2. BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )

    找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...

  3. BZOJ1880:[SDOI2009]Elaxia的路线(最短路,拓扑排序)

    Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...

  4. BZOJ1880: [Sdoi2009]Elaxia的路线(最短路)

    1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 2049  Solved: 805 题目链接:https ...

  5. 【BZOJ1880】[SDOI2009]Elaxia的路线 (最短路+拓扑排序)

    [SDOI2009]Elaxia的路线 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. \(El ...

  6. bzoj1880: [Sdoi2009]Elaxia的路线(spfa,拓扑排序最长路)

    1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 1944  Solved: 759[Submit][St ...

  7. Luogu P2149 [SDOI2009]Elaxia的路线(最短路+记忆化搜索)

    P2149 [SDOI2009]Elaxia的路线 题意 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的 ...

  8. [luogu2149][bzoj1880][SDOI2009]Elaxia的路线【拓扑排序+最短路+DP】

    题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间 ...

  9. BZOJ1880: [Sdoi2009]Elaxia的路线

    题意:求最短路最长公共距离. 考虑每一条边,如果满足dis(s1,u)+len+dis(v,t1)==dis(s1,t1) && dis(s2,u)+len+dis(v,t2)==di ...

随机推荐

  1. [dp uestc oj] G - 邱老师玩游戏

    G - 邱老师玩游戏 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submi ...

  2. JS实用技术

    JS外部引用其他文件(建议) <script src="myScript1.js"></script> JS输出显示方式 使用 window.alert() ...

  3. iOS 多线程编程

    参考文章: iOS多线程编程之NSThread的使用http://blog.csdn.net/totogo2010/article/details/8010231 iOS多线程编程之NSOperati ...

  4. 解决升级mac os X EI Capitan后遇到LibclangError: dlopen(libclang.dylib, 6): image not found.的问题

    打开文件./frameworks/cocos2d-x/tools/bindings-generator/clang/cindex.py 把第 3395 行 改为 : library = cdll.Lo ...

  5. ReactiveCocoa入门-part2

    ReactiveCocoa是一个框架,它能让你在iOS应用中使用函数响应式编程(FRP)技术.在本系列教程的第一部分中,你学到了如何将标准的动作与事件处理逻辑替换为发送事件流的信号.你还学到了如何转换 ...

  6. NOIP模拟赛 魔方

    [题目描述] ccy(ndsf)觉得手动复原魔方太慢了,所以他要借助计算机. ccy(ndsf)家的魔方都是3*3*3的三阶魔方,大家应该都见过. (3的“顺时针”改为“逆时针”,即3 4以图为准.) ...

  7. 转载:将画布(canvas)图像保存成本地图片的方法

    之前我曾介绍过如何将HTML5画布(canvas)内容转变成图片形式,方法十分简单.但后来我发现只将canvas内容转变成图片输出还不够,如何能将转变后的图片保存到本地呢? 其实,这个方法也是非常简单 ...

  8. OC8051项目启动

  9. read design into DC memory

  10. 命令行下创建MySQL数据库与创建用户以及授权

    先以root用户登录mysql: C:\Users\XXX>mysql -u root -p 输入密码后登录,接下来操作如下: 1.创建数据库 语法:create schema [数据库名称] ...