题目描述

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!”
SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

输入

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

输出

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

样例输入

3
1 2 50
1 3 50
50 0 0

样例输出

1.000000


题解

树形概率dp

先自下至上dp,求出每个子树中根节点不能工作的概率$f[x]$。其中工作需要子节点字数能工作且边存在。

然后自上至下dp,更新每个点能工作的概率$g[x]$,计算出父树的贡献,方法同理。

具体的dp方程:

$f[x]=(1-w[x])*\prod(1-f[to[i]]*val[i])$

$g[1]=f[1]$

$g[to[i]]=f[to[i]]*(1-(1-\frac{g[x]}{1-(1-f[to[i]])*val[i]})*val[i])$。

注意可能产生的除0的情况,此时$g[x]$必然等于0,特判一下就好了。

最后的答案即为$\sum\limits_{i=1}^ng[i]$。

#include <cstdio>
#define N 500010
const double eps = 1e-7;
int head[N] , to[N << 1] , next[N << 1] , cnt;
double val[N << 1] , w[N] , f[N] , g[N];
void add(int x , int y , double z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void dfs1(int x , int fa)
{
int i;
f[x] = 1 - w[x];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa)
dfs1(to[i] , x) , f[x] *= 1 - (1 - f[to[i]]) * val[i];
}
void dfs2(int x , int fa)
{
int i;
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa)
{
if(1 - (1 - f[to[i]]) * val[i] < eps) g[to[i]] = f[to[i]] * val[i];
else g[to[i]] = f[to[i]] * (1 - (1 - g[x] / (1 - (1 - f[to[i]]) * val[i])) * val[i]);
dfs2(to[i] , x);
}
}
}
int main()
{
int n , i , x , y;
double z , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d%lf" , &x , &y , &z) , add(x , y , z / 100) , add(y , x , z / 100);
for(i = 1 ; i <= n ; i ++ ) scanf("%lf" , &w[i]) , w[i] /= 100;
dfs1(1 , 0) , g[1] = f[1] , dfs2(1 , 0);
for(i = 1 ; i <= n ; i ++ ) ans += 1 - g[i];
printf("%.6lf\n" , ans);
return 0;
}

【bzoj3566】[SHOI2014]概率充电器 树形概率dp的更多相关文章

  1. BZOJ3566: [SHOI2014]概率充电器 树形+概率dp

    3566: [SHOI2014]概率充电器 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1888  Solved: 857[Submit][Stat ...

  2. BZOJ 3566 概率充电器(树形概率DP)

    题面 题目传送门 分析 定义f(i)f(i)f(i)为iii点不被点亮的概率,p(i)p(i)p(i)为iii自己被点亮的概率,p(i,j)p(i,j)p(i,j)表示i−ji-ji−j 这条边联通的 ...

  3. BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP

    BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技 ...

  4. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  5. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

  6. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  7. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  8. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  9. BZOJ3566 SHOI2014 概率充电器 【概率DP】

    BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...

随机推荐

  1. Cause: java.lang.UnsupportedOperationException

    运行web项目的时候出现以下错误: ### Cause: java.lang.UnsupportedOperationException    at org.mybatis.spring.MyBati ...

  2. MySql5.7主从配置

    记录 环境:ubuntu16.04,mysql5.7 主机:192.168.1.240,192.168.1.241:241为Salve 1.安装mysql sudo apt-get install m ...

  3. Silverlight日记:动态操作Grid

    一,动态生成Grid public static Grid CreateGrid(List<T_METER> List) { var g = new Grid(); if (null == ...

  4. VS Code:设置多行注释快捷键

    多行注释,也叫块注释. 如何查看,并修改VS Code中的多行注释快捷键呢? 1). 点击 首选项 - 键盘快捷方式 2). 在搜索框中输入 comment 3). 这个时候可以看到“切换块注释”的信 ...

  5. 状态压缩dp 状压dp 详解

    说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...

  6. BZOJ-3679(数位DP)

    #include <bits/stdc++.h> using namespace std; typedef long long ll; ll a,b; int k[20]; ll dp[2 ...

  7. 【python】python环境搭建

    本文主要用于记录python环境的搭建一些不常用的命令,其他的安装步骤在其他大师可以找到就不详细列出了.(注:以下操作都是在Ubuntu14.04LTS版本) 一.环境查询相关 1.查询当前pytho ...

  8. 3.layhm框架的流程与Boot类启动

    思路 在项目根目录里新建好对应的目录 cmd里在项目根目录里,composer init初使化,一路回车 把要自动加载的文件和目录定在composer.json文件的autoload里,file是自动 ...

  9. FIFO buffer 和普通buffer区别

    1.FIFO可以说一块具体的硬件存储设备,也可以说程序在内存中开辟的一段内存区域.而buffer往往就是一段缓冲的数据区域 2.FIFO的数据是先进先出的,而buffer没有这个限制,可以全局访问 3 ...

  10. hdu 6354

    Problem Description Edward is a worker for Aluminum Cyclic Machinery. His work is operating mechanic ...