题目描述

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!”
SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

输入

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

输出

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

样例输入

3
1 2 50
1 3 50
50 0 0

样例输出

1.000000


题解

树形概率dp

先自下至上dp,求出每个子树中根节点不能工作的概率$f[x]$。其中工作需要子节点字数能工作且边存在。

然后自上至下dp,更新每个点能工作的概率$g[x]$,计算出父树的贡献,方法同理。

具体的dp方程:

$f[x]=(1-w[x])*\prod(1-f[to[i]]*val[i])$

$g[1]=f[1]$

$g[to[i]]=f[to[i]]*(1-(1-\frac{g[x]}{1-(1-f[to[i]])*val[i]})*val[i])$。

注意可能产生的除0的情况,此时$g[x]$必然等于0,特判一下就好了。

最后的答案即为$\sum\limits_{i=1}^ng[i]$。

#include <cstdio>
#define N 500010
const double eps = 1e-7;
int head[N] , to[N << 1] , next[N << 1] , cnt;
double val[N << 1] , w[N] , f[N] , g[N];
void add(int x , int y , double z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void dfs1(int x , int fa)
{
int i;
f[x] = 1 - w[x];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa)
dfs1(to[i] , x) , f[x] *= 1 - (1 - f[to[i]]) * val[i];
}
void dfs2(int x , int fa)
{
int i;
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa)
{
if(1 - (1 - f[to[i]]) * val[i] < eps) g[to[i]] = f[to[i]] * val[i];
else g[to[i]] = f[to[i]] * (1 - (1 - g[x] / (1 - (1 - f[to[i]]) * val[i])) * val[i]);
dfs2(to[i] , x);
}
}
}
int main()
{
int n , i , x , y;
double z , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d%lf" , &x , &y , &z) , add(x , y , z / 100) , add(y , x , z / 100);
for(i = 1 ; i <= n ; i ++ ) scanf("%lf" , &w[i]) , w[i] /= 100;
dfs1(1 , 0) , g[1] = f[1] , dfs2(1 , 0);
for(i = 1 ; i <= n ; i ++ ) ans += 1 - g[i];
printf("%.6lf\n" , ans);
return 0;
}

【bzoj3566】[SHOI2014]概率充电器 树形概率dp的更多相关文章

  1. BZOJ3566: [SHOI2014]概率充电器 树形+概率dp

    3566: [SHOI2014]概率充电器 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1888  Solved: 857[Submit][Stat ...

  2. BZOJ 3566 概率充电器(树形概率DP)

    题面 题目传送门 分析 定义f(i)f(i)f(i)为iii点不被点亮的概率,p(i)p(i)p(i)为iii自己被点亮的概率,p(i,j)p(i,j)p(i,j)表示i−ji-ji−j 这条边联通的 ...

  3. BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP

    BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技 ...

  4. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  5. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

  6. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  7. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  8. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  9. BZOJ3566 SHOI2014 概率充电器 【概率DP】

    BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...

随机推荐

  1. 发现知乎的一个Bug,并且我绕过了此Bug,沾沾自喜中...

    发现问题 在知乎点击修改头像,上传图片时发现一片空白.凭着程序员的直觉,第一反应时看下控制台是否有报错.果然发现如下: Refused to load the image 'data:image/jp ...

  2. 剑指offer64 数据流中的中位数

    priority_queue优先级队列,他的模板声明带有三个参数,priority_queue<Type, Container, Functional> Type 为数据类型, Conta ...

  3. web.xml 中 resource-ref 的注意事项

    配置说明: web.xml 中配置 <resource-ref> <description>Employees Database for HR Applications< ...

  4. java基础——接口与抽象类的区别

    (1)首先接口和抽象类的设计目的就是不一样的.接口是对动作的抽象,而抽象类是对根源的抽象. (2)对于抽象类,一个类只能继承一个抽象类.但是一个类可以同时实现多个接口. (3)接口是公开的,里面不能有 ...

  5. 读取Exchange的用户未读邮件数的几种方法

    [http://www.cnblogs.com/nbpowerboy/p/3539422.html] 可以使用ExchangeServiceBinding获取邮件,他相当于outlook, 来获取服务 ...

  6. Java第11次作业:什么是继承?继承的好处?什么是覆写?super()?构造代码块?子父类初始化顺序? 抽象类能用final声明吗?final关键字声明类 方法 变量以及全局常量?抽象类的构造方法?

    什么是继承? 继承是以父类为基础,子类可以增加新的数据或新的功能.子类不能选择性地继承父类.这种技术使得复用以前的代码非常容易. JAVA不支持多继承,单继承使JAVA的继承关系很简单,一个类只能有一 ...

  7. ios下通过webservice获取数据

    经历了两天的摸索,终于成功获取了数据,因为公司要做一个停车入库的信息查询,所以需要访问webservice的接口,由于没有接触过webservice,所以第一天就是各种搜索资料,类库,各种尝试,甚至是 ...

  8. 【转】本人常用资源整理(ing...)

    Deep Learning(深度学习): ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一 ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习) ...

  9. 数据结构实用C语言基础

    大纲: 主要介绍了C语言中的指针,内存分配,两种传参方式,typedef的简单用法 关于C语言中的指针: 指针变量也称为指针(Pointer) 例如:int* p; 则p为一个指向int类型的指针. ...

  10. 13Shell脚本—编写简单脚本

    1. 概述 Shell脚本命令的工作方式有两种:交互式和批处理. 交互式(Interrctive): 用户每输入一条命令就立即执行. 批处理(Batch): 由用户事先编写好一个完整的 Shell 脚 ...