题意很简明吧?

枚举的矩形下边界和右端点即右下角,来确定矩形位置;

每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下;

然后在记录的每一列的最大值和最小值上,跑滑动窗口,即用单调队列维护区间 [ j-n+1 , j ] 的最大值和最小值;

相当于维护了一个矩形的最大值和最小值

#include<cstdio>
#include<iostream>
#include<queue>
#define R register int
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
inline int abs(int x) {return x>?x:-x;}
int a,b,n,ans=0x3f3f3f3f;
int vl[][];
deque<int> q[],qq[],p,pp;
signed main() {
a=g(),b=g(),n=g();
for(R i=;i<=a;++i) for(R j=;j<=b;++j) vl[i][j]=g();
for(R i=;i<=a;++i) {
for(R j=;j<=b;++j) {
while(q[j].size()&&vl[q[j].back()][j]<vl[i][j]) q[j].pop_back();
while(q[j].size()&&q[j].front()+n<=i) q[j].pop_front();
q[j].push_back(i);
//cout<<i<<"hang"<<j<<"lie"<<vl[i][q[j].front()]<<" ";
//cout<<"mx"<<vl[q[j].front()][j]<<" ";
}
for(R j=;j<=b;++j) {
while(qq[j].size()&&vl[qq[j].back()][j]>vl[i][j]) qq[j].pop_back();
while(qq[j].size()&&qq[j].front()+n<=i) qq[j].pop_front();
qq[j].push_back(i);
//cout<<"mn"<<vl[qq[j].front()][j]<<" ";
}//cout<<'\n';
if(i<n) continue;
p.clear();pp.clear();
for(R j=;j<=b;++j) {
while(p.size()&&vl[q[p.back()].front()][p.back()]<vl[q[j].front()][j]) p.pop_back();
while(p.size()&&p.front()+n<=j) p.pop_front();
p.push_back(j);
while(pp.size()&&vl[qq[pp.back()].front()][pp.back()]>vl[qq[j].front()][j]) pp.pop_back();
while(pp.size()&&pp.front()+n<=j) pp.pop_front();
pp.push_back(j);
if(j<n) continue;
ans=min(abs(vl[q[p.front()].front()][p.front()]-vl[qq[pp.front()].front()][pp.front()]),ans);
}
}printf("%d\n",ans);
}

2019.04.06

BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞的更多相关文章

  1. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  2. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  3. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  4. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  5. [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】

    题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...

  6. bzoj 1047: [HAOI2007]理想的正方形【单调队列】

    没有复杂结构甚至不长但是写起来就很想死的代码类型 原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值 然后 ...

  7. BZOJ 1047: [HAOI2007]理想的正方形

    题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...

  8. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

  9. [HAOI2007] 理想的正方形 (单调队列)

    题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...

随机推荐

  1. tkinter之对话框

    对话框的一个例子: from tkinter.dialog import * from tkinter import * def investigation(): d=Dialog(None,titl ...

  2. 浅析android中的依赖注入

    这几年针对Android推出了不少View注入框架,例如ButterKnife.我们首先来了解一下使用这些框架有什么好处,其实好处很明显:它可以减少大量的findViewById以及setOnClic ...

  3. tensorflow实现svm多分类 iris 3分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)

    # Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussi ...

  4. [原创]java导出excel

    一.需求背景 在项目开发中,经常会遇到导出Excel报表文件的情况,因为很多情况下,我们需要打印Excel报表,虽然在网页上也可以生成报表,但是打印网上里的报表是无法处理排版问题的,所以最好的方式,还 ...

  5. ACM学习历程—Hihocoder 1178 计数(位运算 && set容器)(hihoCoder挑战赛12)

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB   描述 Rowdark是一个邪恶的魔法师.在他阅读大巫术师Lich的传记时,他发现一类黑魔法来召唤远古生物,鱼丸. 魔法n能召 ...

  6. robotium 测试APK<一> 建立测试工程

    1.准备Android开发环境 2.准备签名工具http://www.troido.de/re-sign.jar 1.建立测试工程 打开Eclipse,点击File->New一个Android ...

  7. 解决mongodb查询慢的问题

    最近项目上一直在用mongodb作为数据库,mongodb有他的优势,文档型类json格式存储数据,修改起来比传统的关系型数据库更方便,但是最近在用mongodb出现了查询缓慢的问题,我用命令行查询, ...

  8. python script

    1.tab键自动补全(每次导入时要将脚本的路径加入到sys.path中) import sysimport readlineimport rlcompleterimport atexitimport ...

  9. Android HAL层与Linux Kernel层驱动开发简介

    近日稍微对Android中的驱动开发做了一些简要的了解. HAL:Hardware Abstract Layer 硬件抽象层,由于Linux Kernel需要遵循GPL开源协议,硬件厂商为了保护自己硬 ...

  10. java 最佳实践

    一: 不要直接new一个thread,应当使用线程池.使用线程池的时候应当对线程数量大小合理设置,一般最大不超过50个,当然还需要考虑你的IO和CPU,怎么分析网上搜搜吧. 二:容器类变量,如果变化比 ...