BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞
题意很简明吧?
枚举的矩形下边界和右端点即右下角,来确定矩形位置;
每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下;
然后在记录的每一列的最大值和最小值上,跑滑动窗口,即用单调队列维护区间 [ j-n+1 , j ] 的最大值和最小值;
相当于维护了一个矩形的最大值和最小值
#include<cstdio>
#include<iostream>
#include<queue>
#define R register int
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
inline int abs(int x) {return x>?x:-x;}
int a,b,n,ans=0x3f3f3f3f;
int vl[][];
deque<int> q[],qq[],p,pp;
signed main() {
a=g(),b=g(),n=g();
for(R i=;i<=a;++i) for(R j=;j<=b;++j) vl[i][j]=g();
for(R i=;i<=a;++i) {
for(R j=;j<=b;++j) {
while(q[j].size()&&vl[q[j].back()][j]<vl[i][j]) q[j].pop_back();
while(q[j].size()&&q[j].front()+n<=i) q[j].pop_front();
q[j].push_back(i);
//cout<<i<<"hang"<<j<<"lie"<<vl[i][q[j].front()]<<" ";
//cout<<"mx"<<vl[q[j].front()][j]<<" ";
}
for(R j=;j<=b;++j) {
while(qq[j].size()&&vl[qq[j].back()][j]>vl[i][j]) qq[j].pop_back();
while(qq[j].size()&&qq[j].front()+n<=i) qq[j].pop_front();
qq[j].push_back(i);
//cout<<"mn"<<vl[qq[j].front()][j]<<" ";
}//cout<<'\n';
if(i<n) continue;
p.clear();pp.clear();
for(R j=;j<=b;++j) {
while(p.size()&&vl[q[p.back()].front()][p.back()]<vl[q[j].front()][j]) p.pop_back();
while(p.size()&&p.front()+n<=j) p.pop_front();
p.push_back(j);
while(pp.size()&&vl[qq[pp.back()].front()][pp.back()]>vl[qq[j].front()][j]) pp.pop_back();
while(pp.size()&&pp.front()+n<=j) pp.pop_front();
pp.push_back(j);
if(j<n) continue;
ans=min(abs(vl[q[p.front()].front()][p.front()]-vl[qq[pp.front()].front()][pp.front()]),ans);
}
}printf("%d\n",ans);
}
2019.04.06
BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞的更多相关文章
- bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2369 Solved: 1266[Submi ...
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】
题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...
- bzoj 1047: [HAOI2007]理想的正方形【单调队列】
没有复杂结构甚至不长但是写起来就很想死的代码类型 原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值 然后 ...
- BZOJ 1047: [HAOI2007]理想的正方形
题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...
- Luogu 2216[HAOI2007]理想的正方形 - 单调队列
Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...
- [HAOI2007] 理想的正方形 (单调队列)
题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...
随机推荐
- Java多线程编程核心 - 对象及变量的并发访问
1.什么是“线程安全”与“非线程安全”? “非线程安全”会在多个线程对同一对象总的实例变量进行并发访问时发生,产生的后果是“脏读”,也就是取到的数据其实是被更改过的. “线程安全”是以获得的实例变量的 ...
- PSPnet:Pyramid Scene Parsing Network——作者认为现有模型由于没有引入足够的上下文信息及不同感受野下的全局信息而存在分割出现错误的情景,于是,提出了使用global-scence-level的信息的pspnet
from:https://blog.csdn.net/bea_tree/article/details/56678560 2017年02月23日 19:28:25 阅读数:6094 首先声明,文末彩蛋 ...
- L87
Fear Makes Art More Engaging Emmanuel Kant spoke often about the sublime, and specifically how art b ...
- leetcode 307. Range Sum Query - Mutable(树状数组)
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- linux 进程学习笔记-进程ID,PID
PID,进程号 , 范围在2~(??为什么需要这么多),而一个名为idle (或swapper)的进程占据的编号0,init进程占据了编号1. 进程0和进程1 : 系统启动时会从无到有地创建进程0,它 ...
- android自定义控件(一) 官方文档的翻译
构建自定义组件 Android中,你的应用程序程序与View类组件有着一种固定的联系,例如按钮(Button).文本框(TextView),可编辑文本框(EditText),列表框(ListView) ...
- mongdb启动问题
问题:Detected unclean shutdown - /data/db/mongod.lock is not empty. old lock file:/data/db/mongod.lock ...
- ACM学习历程——POJ 1700 Crossing River(贪心)
Description A group of N people wishes to go across a river with only one boat, which can at most ca ...
- 洛谷P1584 魔杖
题目描述 Smart在春游时意外地得到了一种好东西——一种非常珍贵的树枝.这些树枝可以用来做优质的魔杖! 选择怎样的切割方式来制作魔杖非常重要,关键问题是——一把魔杖既不能太长.又不能太短,且制作出来 ...
- WPF Background的设置有坑
今天帮忙同事解决在后台绑定时,动态更改控件(Grid)的Background. 有个陷阱,C#有2个命名空间有Brush和Color, 分别为System.Drawing和System.Window. ...