Java原子类及内部原理
一、引入
原子是世界上的最小单位,具有不可分割性。比如 a=0;(a非long和double类型) 这个操作是不可分割的,那么我们说这个操作是原子操作。再比如:a++;
这个操作实际是a = a + 1;是可分割的,所以他不是一个原子操作。非原子操作都会存在线程安全问题,需要我们使用同步技术(sychronized)来让它变成一
个原子操作。
但是,像i++这种非原子操作,我们除了使用synchroinzed关键字实现同步外,还可以使用java.util.concurrent.atomic提供的线程安全的原子类来实现,例如
AtomicInteger、AtomicLong、AtomicReference等。下面我们就基于AtomicInteger为例,来看看其内部实现。
二、AtomicInteger的内部实现
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L;
// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
这段代码我们需要注意一下几个方面:
(1)unsafe字段,AtomicInteger包含了一个Unsafe类的实例,unsafe就是用来实现CAS机制的,CAS机制我们在后面会讲到;
(2)value字段,表示当前对象代码的基本类型的值,AtomicInteger是int型的线程安全包装类,value就代码了AtomicInteger的值。注意,这个字段是volatile的。
(3)valueOfset,指是value在内存中的偏移量,也就是在内存中的地址,通过Unsafe.objectFieldOffset(Field f)获取。这个值在使用CAS机制的时候会用到。
下面我们来看一个AtomicInteger类中的主要方法getAndIncrement(),也就相当于i++操作,只不过它是线程安全的,其实现代码如下:
public final int getAndIncrement() {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return current;
}
}
这个方法的做法为先获取到当前的 value 属性值,然后将 value 加 1,赋值给一个局部的 next 变量,然而,这两步都是非线程安全的,但是内部有一个死循环,
不断去做compareAndSet操作,直到成功为止,也就是修改的根本在compareAndSet方法里面。compareAndSet()方法的代码如下:
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
compareAndSet 传入的为执行方法时获取到的 value 属性值,update为加 1 后的值, compareAndSet所做的为调用 Sun 的 UnSafe 的 compareAndSwapInt
方法来完成,此方法为 native 方法,compareAndSwapInt 基于的是CPU 的 CAS指令来实现的。下面我们将详细的来介绍一下CAS的实现原理。
三、CAS机制
CAS是英文单词Compare And Swap的缩写,翻译过来就是比较并替换。CAS机制当中使用了3个基本操作数:
(1)内存地址V,也就是AtomicInteger中的valueOffset。
(2)旧的预期值A,也就是getAndIncrement方法中的current。
(3)要修改的新值B,也就是getAndIncrement方法中的next。
CAS机制中,更新一个变量的时候,只有当变量的预期值A和内存地址V当中的实际值相同时,才会将内存地址V对应的值修改为B。下面我们来看一个具体的例子:
(1)在内存地址V当中,存储着值为10的变量。
(2)此时线程1想要把变量的值增加1。对线程1来说,旧的预期值A=10,要修改的新值B=11。
(3)但是,在线程1要提交更新之前,另一个线程2抢先一步,把内存地址V中的变量值率先更新成了11。
(4)此时,线程1开始提交更新,首先进行A和地址V的实际值比较(Compare),发现A不等于V的实际值,提交失败。
(5)线程1重新获取内存地址V的当前值,并重新计算想要修改的新值。此时对线程1来说,A=11,B=12。这个重新尝试的过程被称为自旋。
(6)这一次比较幸运,没有其他线程改变地址V的值。线程1进行Compare,发现A和地址V的实际值是相等的。
(7)线程1进行替换,把地址V的值替换为B,也就是12。
对比Synchronized,我们可以发现,Synchronized属于悲观锁,悲观地认为程序中的并发情况严重,所以严防死守。CAS属于乐观锁,乐观地认为程序中的并发情况不那么
严重,所以让线程不断去尝试更新。
但是CAS机制通常也存在以下缺点:
(1)ABA问题
如果V的初始值是A,在准备赋值的时候检查到它仍然是A,那么能说它没有改变过吗?也许V经历了这样一个过程:它先变成了B,又变成了A,使用CAS检查时
以为它没变,其实却已经改变过了。
(2)CPU开销较大
在并发量比较高的情况下,如果许多线程反复尝试更新某一个变量,却又一直更新不成功,循环往复,会给CPU带来很大的压力。
(3)不能保证代码块的原子性
CAS机制所保证的只是一个变量的原子性操作,而不能保证整个代码块的原子性。比如需要保证3个变量共同进行原子性的更新,就不得不使用Synchronized了。
Java原子类及内部原理的更多相关文章
- 对Java原子类AtomicInteger实现原理的一点总结
java原子类不多,包路径位于:java.util.concurrent.atomic,大致有如下的类: java.util.concurrent.atomic.AtomicBoolean java. ...
- Java原子类AtomicInteger实现原理的一点总结
java原子类不多,包路径位于:java.util.concurrent.atomic,大致有如下的类: java.util.concurrent.atomic.AtomicBoolean java. ...
- Java原子类中CAS的底层实现
Java原子类中CAS的底层实现 从Java到c++到汇编, 深入讲解cas的底层原理. 介绍原理前, 先来一个Demo 以AtomicBoolean类为例.先来一个调用cas的demo. 主线程在f ...
- 死磕 java原子类之终结篇(面试题)
概览 原子操作是指不会被线程调度机制打断的操作,这种操作一旦开始,就一直运行到结束,中间不会有任何线程上下文切换. 原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序不可以被打乱,也不可以被切割 ...
- 源码编译OpenJdk 8,Netbeans调试Java原子类在JVM中的实现(Ubuntu 16.04)
一.前言 前一阵子比较好奇,想看到底层(虚拟机.汇编)怎么实现的java 并发那块. volatile是在汇编里加了lock前缀,因为volatile可以通过查看JIT编译器的汇编代码来看. 但是原子 ...
- Java 原子类 java.util.concurrent.atomic
Java 原子类 java.util.concurrent.atomic 1.i++为什么是非线程安全的 i++其实是分为3个步骤:获取i的值, 把i+1, 把i+1的结果赋给i 如果多线程执行i++ ...
- Java原子类实现原理分析
在谈谈java中的volatile一文中,我们提到过并发包中的原子类可以解决类似num++这样的复合类操作的原子性问题,相比锁机制,使用原子类更精巧轻量,性能开销更小,本章就一起来分析下原子类的实现机 ...
- CAS 算法与 Java 原子类
乐观锁 一般而言,在并发情况下我们必须通过一定的手段来保证数据的准确性,如果没有做好并发控制,就可能导致脏读.幻读和不可重复度等一系列问题.乐观锁是人们为了应付并发问题而提出的一种思想,具体的实现则有 ...
- java:原子类的CAS
当一个处理器想要更新某个变量的值时,向总线发出LOCK#信号,此时其他处理器的对该变量的操作请求将被阻塞,发出锁定信号的处理器将独占共享内存,于是更新就是原子性的了. 1.compareAndSet- ...
随机推荐
- Html5_css
CSS 在标签上设置style属性: background-color: #2459a2; height: 48px; ... 编写css样式: 1. 标签的style属性 2. 写在head里面 s ...
- ZOJ 2314 (sgu 194) Reactor Cooling (无源汇有上下界最大流)
题意: 给定n个点和m条边, 每条边有流量上下限[b,c], 求是否存在一种流动方法使得每条边流量在范围内, 而且每个点的流入 = 流出 分析: 无源汇有上下界最大流模板, 记录每个点流的 in 和 ...
- ACM 贪心算法总结
贪心算法的本质: 就是当前状态的最优解,它并不考虑全局. 什么是当前状态的最优解? 成本问题? https://www.cnblogs.com/xuxiaojin/p/9400892.html (po ...
- 卸载firefox多余的搜索引擎
火狐默认了几个搜索引擎,百度,bing,yahoo等.搜一些技术方面的东西的时候,google返回的结果比这些要准确有用.所以想卸载掉那些不用的. 具体操作: 点击搜索栏,左侧搜索引擎图票右下角的倒三 ...
- MiniProfiler监控调试MVC5以及EntityFramework6性能
想要通过在MVC中view中直观的查看页面加载以及后台EF执行情况,可以通过MiniProfiler小工具来实现. 但是从网上搜索的相关信息要么是MVC4下的老版本的MiniProfiler,要么就是 ...
- LiveScript 操作符
The LiveScript Book The LiveScript Book 操作符 数字 标准的数学操作符: 1.1 + 2 # => 32.3 - 4 # => -13.6 ...
- Leetcode 466.统计重复个数
统计重复个数 定义由 n 个连接的字符串 s 组成字符串 S,即 S = [s,n].例如,["abc", 3]="abcabcabc". 另一方面,如果我们可 ...
- The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online
A Live Love DreamGrid is playing the music game Live Love. He has just finished a song consisting of ...
- IO Streams:扫描
简介 Scanner类被用于输入的格式化中断,并将其移到Tokens中,然后对其单个的Tokens根据其数据类型进行翻译. 从input--Tokens 默认情况下,一个Scanner使用 空格 键去 ...
- [CODEVS1916] 负载平衡问题(最小费用最大流)
传送门 输入所有 a[i],求出平均值 sum,每个 a[i] -= sum 那么如果 a[i] > 0,从 s 向 i 连一条容量为 a[i] 费用为 0 的有向边 如果 a[i] < ...