题目链接   Ciel and Flipboard

题意  给出一个$n*n$的正方形,每个格子里有一个数,每次可以将一个大小为$x*x$的子正方形翻转

翻转的意义为该区域里的数都变成原来的相反数。

求经过若干次操作之后整个正方形的所有数之和。

这题关键就是要知道这个结论。

假设$st[i][j]$为$a[i][j]$的翻转情况($st[i][j] = 0$ 不翻转  $st[i][j] = 1$ 翻转)

那么一定有 $st[i][j]$ xor $st[i][x]$ xor $st[i][j + x]$ = $0$

这是行的情况

那么对于列的情况也有

$st[i][j]$ xor $st[x][j]$ xor $st[i + x][j]$ = $0$

每一个式子中,我们求出了两项,就可以知道另外一项。

考虑枚举$st[x][1]$, $st[x][2]$, $st[x][3]$, ..., $st[x][x]$

这样一共有$2^{17}$种枚举方案

根据上面的结论,枚举了这$x$个元素之后,这一行的剩下全部元素都知道了

也就是说我们花了$2^{x}$的复杂度,得到了中间这一行的所有情况。

接着我们要对剩下的一些未知情况进行枚举。

首先我们枚举$st[1][x]$($0$ or $1$)

这样的话我们得到了$st[x + 1][x]$的值

在知道这两个值的情况下, 我们再枚举$st[1][1]$的值($0$ or $1$)

于是根据所有之前得到的值,我们可以得到$st[1][1], st[1][x + 1], st[x + 1][1], st[x + 1][x + 1]$

我们根据这些枚举得到的值算出$a[1][1] + a[1][x + 1] + a[x + 1][1] + a[x + 1][x + 1]$在$st[1][1]$等于$0$或$1$的时候哪个更大

处理完$st[1][1]$这边之后我们处理$st[1][2]$(同枚举$st[1][1]$的方法),直到处理到$st[1][x - 1]$。

然后我们枚举$st[2][x]$($0$ or $1$)

......

直到枚举到$st[x - 1][x]$($0$ or $1$)

这样就把所有的情况都覆盖了。

时间复杂度$O(2^{x}x^{2})$

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) const int N = 53;
const int mul[2] = {1, -1}; int a[N][N];
int n, x;
int st[N][N];
int ans; int main(){ scanf("%d", &n);
rep(i, 0, n - 1) rep(j, 0, n - 1) scanf("%d", &a[i][j]);
x = (n + 1) / 2;
ans = -(1 << 30);
rep(s, 0, (1 << x) - 1){
int sum = 0;
rep(i, 0, x - 1) st[x - 1][i] = (s >> i) & 1;
rep(i, x, n - 1) st[x - 1][i] = st[x - 1][i - x] ^ st[x - 1][x - 1];
rep(i, 0, n - 1) sum += mul[st[x - 1][i]] * a[x - 1][i];
rep(i, 0, x - 2){
int cnt = -(1 << 30);
rep(op, 0, 1){
st[i][x - 1] = op;
st[i + x][x - 1] = op ^ st[x - 1][x - 1];
int now = a[i][x - 1] * mul[op] + a[i + x][x - 1] * mul[st[i + x][x - 1]];
rep(j, 0, x - 2){
int et = -(1 << 30);
rep(ct, 0, 1){
st[i][j] = ct;
st[i][j + x] = ct ^ st[i][x - 1];
st[i + x][j] = ct ^ st[x - 1][j];
st[i + x][j + x] = st[i + x][x - 1] ^ st[i + x][j];
et = max(et, a[i][j] * mul[st[i][j]] + a[i][j + x] * mul[st[i][j + x]] + a[i + x][j] * mul[st[i + x][j]] + a[i + x][j + x] * mul[st[i + x][j + x]]);
}
now += et;
}
cnt = max(cnt, now);
}
sum += cnt;
}
ans = max(ans, sum);
}
printf("%d\n", ans);
return 0;
}

  

Codeforces 321D Ciel and Flipboard(结论题+枚举)的更多相关文章

  1. [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard

    [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard 题意 给定一个 \(n\times n\) 的矩阵 \(A\), (\(n\) 为奇数) , ...

  2. codeforces 1269D. Domino for Young (二分图证明/结论题)

    链接:https://codeforces.com/contest/1269/problem/D 题意:给一个不规则的网格,在上面放置多米诺骨牌,多米诺骨牌长度要么是1x2,要么是2x1大小,问最多放 ...

  3. 【bzoj4401】块的计数 结论题

    题目描述 给出一棵n个点的树,求有多少个si使得整棵树可以分为n/si个连通块. 输入 第一行一个正整数N,表示这棵树的结点总数,接下来N-1行,每行两个数字X,Y表示编号为X的结点与编号为Y的结点相 ...

  4. [codevs5578][咸鱼]tarjan/结论题

    5578 咸鱼  时间限制: 1 s  空间限制: 128000 KB   题目描述 Description 在广袤的正方形土地上有n条水平的河流和m条垂直的河流,发达的咸鱼家族在m*n个河流交叉点都 ...

  5. BZOJ_1367_[Baltic2004]sequence_结论题+可并堆

    BZOJ_1367_[Baltic2004]sequence_结论题+可并堆 Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 ...

  6. [BZOJ3609][Heoi2014]人人尽说江南好 结论题

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏.     在过去,人们是要 ...

  7. 【uoj#282】长度测量鸡 结论题

    题目描述 给出一个长度为 $\frac{n(n+1)}2$ 的直尺,要在 $0$ 和 $\frac{n(n+1)}2$ 之间选择 $n-1$ 个刻度,使得 $1\sim \frac{n(n+1)}2$ ...

  8. 【uoj#175】新年的网警 结论题+Hash

    题目描述 给出一张 $n$ 个点 $m$ 条边的无向连通图,每条边的边权为1.对于每个点 $i$ ,问是否存在另一个点 $j$ ,使得对于任意一个不为 $i$ 或 $j$ 的点 $k$ ,$i$ 到 ...

  9. 【uoj#180】[UR #12]实验室外的攻防战 结论题+树状数组

    题目描述 给出两个长度为 $n$ 的排列 $A$ 和 $B$ ,如果 $A_i>A_{i+1}$ 则可以交换 $A_i$ 和 $A_{i+1}$ .问是否能将 $A$ 交换成 $B$ . 输入 ...

随机推荐

  1. paper:synthesizable finit state machine design techniques using the new systemverilog 3.0 enhancements之fsm summary

    主要是1.不要用1段式写FSM 2.不要用状态编码写one-hot FSM ,要用索引编码写one-hot FSM.

  2. Python基础学习总结__Day3

    一.集合 1.特性:无序且天生去重,格式为{} 2.作用: (1)去重 (2)关系测试 3.可调用函数(常见对列表操作) (1)取交集:A.intersection(B) (2)取并集:A.union ...

  3. Python开发环境与开发软件的安装

    Python开发的必要因素: 开发软件:PyCharm 社区版 PyCharm安装过程: 首先去官网下载:(链接为:  https://www.jetbrains.com/pycharm/downlo ...

  4. SpringMVC总结以及在面试中的一些问题.

    1.简单的谈一下SpringMVC的工作流程? 流程 1.用户发送请求至前端控制器DispatcherServlet 2.DispatcherServlet收到请求调用HandlerMapping处理 ...

  5. German Collegiate Programming Contest 2015 计蒜课

    // Change of Scenery 1 #include <iostream> #include <cstdio> #include <algorithm> ...

  6. source insight

    关于source inlight的版本 http://www.camnpr.com/archives/559.html   最新版本 http://www.sourceinsight.com/upda ...

  7. jdk生成证书,网站请求变成https

    生成证书的步骤 1.进入jdk的bin目录 keytool -genkey -alias tomcat -keyalg RSA   命名证书的名字叫tomcat 2.将证书拷贝至tomcat的bin目 ...

  8. webdriver高级应用- 使用日志模块记录测试过程中的信息

    在自动化脚本执行过程中,使用Python的日志模块记录在测试用例执行过程中一些重要信息或者错误日志等,用于监控和后续调试脚本. 在pycharm下新建工程,并创建Log.py.Logger.conf以 ...

  9. 【LeetCode】Binary Tree Inorder Traversal(二叉树的中序遍历)

    这道题是LeetCode里的第94道题. 题目要求: 给定一个二叉树,返回它的中序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,3,2] 进阶: 递归算法很简单 ...

  10. Django模板(filter过滤器{{ }}与tag标签{% %}应用)

     模板里面过滤器与标签的应用 templates模板里面的应用参考(主要应用在这里面) <!DOCTYPE html> <html lang="en"> & ...