题意:求解一般模线性同余方程组

解题关键:扩展中国剩余定理求解。两两求解。

$\left\{ {\begin{array}{*{20}{l}}
{x = {r_1}\,\bmod \,{m_1}}\\
{x = {r_2}\,\bmod \,{m_2}}
\end{array}} \right.$

为了代码的符号清晰,将转化后的系数都为正,故如下设方程。

$\left\{ {\begin{array}{*{20}{l}}
{x = {r_1} - {k_1}{m_1}}\\
{x = {r_2} + {k_2}{m_2}}
\end{array}} \right.$

${r_1} - {r_2} = {k_2}{m_2} + {k_1}{m_1}$

以上其实是另一个模线性同余方程组。

考虑$ax + by = c$

由模线性同余方程的存在定理:$\gcd (a,b)|c$

$\begin{array}{l}
\frac{a}{{\gcd (a,b)}}x + \frac{b}{{\gcd (a,b)}} = \frac{c}{{\gcd (a,b)}}\\
x \equiv {(\frac{a}{{\gcd (a,b)}})^{ - 1}}\frac{c}{{\gcd (a,b)}}\bmod (\frac{b}{{\gcd (a,b)}})
\end{array}$

回归原式:

$x$即为${k_1}$

推出原式中的$x$

$x = {r_1} - {k_1}{m_1} = {r_1} - {m_1}{(\frac{{{m_1}}}{{\gcd ({m_1},{m_2})}})^{ - 1}}\frac{{{r_2} - {r_1}}}{{\gcd ({m_1},{m_2})}}\bmod \frac{{{m_1}{m_2}}}{{\gcd ({m_1},{m_2})}}$

一般化这个结论,模数即为lcm,可直接记住

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<iostream>
using namespace std;
typedef long long ll;
ll x,y,r[],m[],n;
ll extgcd(ll a,ll b,ll &x,ll &y){
ll d=a;
if(b) d=extgcd(b,a%b,y,x),y-=a/b*x;
else x=,y=;
return d;
}
ll excrt(int n,ll *m,ll *r){
ll M=m[],pre=r[],d;//a是模数
for(int i=;i<n;i++){
d=extgcd(M,m[i],x,y);
if((pre-r[i])%d!=) return -;
x=(pre-r[i])/d*x%m[i];
pre-=x*M;
M=M/d*m[i];//lcm
pre%=M;
}
return (pre%M+M)%M;
}
int main(){
ios::sync_with_stdio();
while(cin>>n){
for(int i=;i<n;i++) cin>>m[i]>>r[i];
ll ans=excrt(n,m,r);
printf("%lld\n",ans);
}
}

[poj2891]Strange Way to Express Integers(扩展中国剩余定理)的更多相关文章

  1. POJ - 2891 Strange Way to Express Integers (扩展中国剩余定理)

    题目链接 扩展CRT模板题,原理及证明见传送门(引用) #include<cstdio> #include<algorithm> using namespace std; ty ...

  2. Strange Way to Express Integers(中国剩余定理+不互质)

    Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...

  3. POJ2891 Strange Way to Express Integers (扩展欧几里德)

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia 题目大意 求解一组同余方程 x ≡ r1 (mod a1) x ≡ r2 (mod a2) x ≡ r ...

  4. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  5. POJ2891 Strange Way to Express Integers 扩展欧几里德 中国剩余定理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2891 题意概括 给出k个同余方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x, ...

  6. 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)

    0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...

  7. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  8. POJ2891——Strange Way to Express Integers(模线性方程组)

    Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...

  9. POJ2891 Strange Way to Express Integers

    题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...

随机推荐

  1. Android之——卸载应用程序

    转载请注明出处:http://blog.csdn.net/l1028386804/article/details/47357729 不多说,不废话,直接上代码,大家都懂得 //卸载应用程序 //參数为 ...

  2. urllib库python2和python3具体区别

      Python 2 name Python 3 name urllib.urlretrieve() urllib.request.urlretrieve() urllib.urlcleanup() ...

  3. BZOJ 1597: [Usaco2008 Mar]土地购买 斜率优化

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MB Description 农夫John准备扩大他的农场,他正在考虑N ...

  4. 远程服务器上的weblogic项目管理(二)发布完成后如何重启weblogic容器

    前面说到了每次更新服务器项目的java文件与配置文件后,需要更新weblogic容器以完成更新加载,下面来说说如何更新weblogic容器: 第一种方法可以通过ssh shell client工具直接 ...

  5. 【题解】 P1373 小a和uim之大逃离

    题解 P1373 小a和uim之大逃离 传送门 一道dp好题 乍看此题,感觉要这样设计: \(dp(x)(y)(mod_{a})(mod_{uim})(0/1)\) , 但是我上午考试就MLE了,赶紧 ...

  6. 【Xcode学C-4】进制知识、位运算符、变量存储细节以及指针的知识点介绍

    一.进制知识 (1)默认是十进制.八进制前面加0.即int num1=015;是13.十六进制前面加0x/0X.即int num1=0xd.结果是13.二进制前面是0b/0B,即int num1=0b ...

  7. T_CODE I18N

    关于T-CODE I18N 最近由于看到很多人遇到SMARTFORMS不能拖拽字段的问题,这个的解决方案 I18N:解决SMARTFORMS的不能从Field name 那边直接把变量拖入右边编辑框 ...

  8. Java实参和形参与传值和传引用

    实参和形参的定义: 形参出现函数定义中,在整个函数体内都可以使用,离开函数则不能使用. 实参出现在主函数中,进入被调函数后,实参变量也不能使用. 形参和实参的功能是做数据传送.发生函数调用时,主调函数 ...

  9. display:inline

    一.基本介绍 它可以让行内显示为块的元素,变为行内显示,例如 <div> DIV1 </div> <div> DIV2 </div> 这里DIV1和DI ...

  10. tensorflow:typeerror:‘noneType’ object is not callable

    程序运行报错 typeerror: ‘noneType’ object is not callable 解决方法:删除缓存文件,再次运行没有错误 删除__pycache__文件夹