题意:

根据离散数学的内容知道,一个二元关系是一个二元有序组<x, y>的集合。

然后有一些特殊的二元关系,比如等价关系,满足三个条件:

  • 自反性,任意的x,都有二元关系<x, x>
  • 对称性,如果有<x, y>则有<y, x>
  • 传递性,如果有<x, y>和<y, z>,则有<x, z>

现在要统计满足后两条,但不满足第一个条件的二元关系的个数。

题中的证明是对的:

If , then (according to property (2)), which means (according to property (3)).

但是前提条件不一定存在,比如对于a,没有一个b满足那么后面的推导就无从谈起了。

不妨把这些不和其他元素(包括自己)产生二元关系的元素称作「空」的。

只要至少有一个「空」的元素,而且其他的元素都在某个等价类里面,就满足题目中的要求。

枚举非「空」元素的个数k(1 ≤ k ≤ n),选出k个元素有C(n, k)中方案,再乘上将k个元素划分为若干个等价类的方案数eq[k],累加起来就是答案。

eq数组可以这样计算:

设d(i, j)为将i个元素划分为j个不同等价类的方案数,d(i, j) = d(i-1, j) * j + d(i-1, j-1) //考虑第i个数加入已有的j个等价类,或者自己成为一个新的等价类

那么eq[i] = sum{ d(i, j) | 0 ≤ j ≤ i }

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long LL; const int maxn = + ;
const LL MOD = ; LL C[maxn][maxn], d[maxn][maxn]; void add(LL& x, LL y)
{
x += y;
if(x >= MOD) x -= MOD;
} int main()
{
int n; scanf("%d", &n); for(int i = ; i <= n; i++) C[i][] = C[i][i] = ;
for(int i = ; i <= n; i++)
for(int j = ; j < i; j++) C[i][j] = (C[i-][j] + C[i-][j-]) % MOD; d[][] = ;
for(int i = ; i <= n; i++)
for(int j = ; j <= i; j++) d[i][j] = (d[i-][j] * j + d[i-][j-]) % MOD; LL ans = ;
for(int i = ; i < n; i++)
{
LL eq = ;
for(int j = ; j <= i; j++) add(eq, d[i][j]);
ans = (ans + C[n][i] * eq) % MOD;
} printf("%I64d\n", ans); return ;
}

代码君

CodeForces 568B DP Symmetric and Transitive的更多相关文章

  1. codeforces 569D D. Symmetric and Transitive(bell数+dp)

    题目链接: D. Symmetric and Transitive time limit per test 1.5 seconds memory limit per test 256 megabyte ...

  2. Codeforces 568B Symmetric and Transitive

    http://codeforces.com/contest/568/problem/B 题意:题意还挺绕的,其实就是说:要你求出一个图,要求保证其中有至少一个点不连任何边,然后其他连边的点构成的每个联 ...

  3. Two Melodies CodeForces - 813D (DP,技巧)

    https://codeforces.com/problemset/problem/813/D dp[i][j] = 一条链以i结尾, 另一条链以j结尾的最大值 关键要保证转移时两条链不能相交 #in ...

  4. Consecutive Subsequence CodeForces - 977F(dp)

    Consecutive Subsequence CodeForces - 977F 题目大意:输出一序列中的最大的连续数列的长度和与其对应的下标(连续是指 7 8 9这样的数列) 解题思路: 状态:把 ...

  5. codeforces的dp专题

    1.(467C)http://codeforces.com/problemset/problem/467/C 题意:有一个长为n的序列,选取k个长度为m的子序列(子序列中不能有位置重复),求所取的k个 ...

  6. Codeforces 721C [dp][拓扑排序]

    /* 题意:给你一个有向无环图.给一个限定t. 问从1点到n点,在不超过t的情况下,最多可以拜访几个点. 保证至少有一条路时限不超过t. 思路: 1.由无后向性我们可以知道(取决于该图是一个DAG), ...

  7. CodeForces 607C (DP) Hard problem

    题目:这里 题意:给定n个字符串,每个字符串可以进行一项操作,就是将这个字符串交换,就是该字符串的第一个和最后一个交换,第二个和倒数第二个交换,以此类推,当然可以选择对于 该字符串进行或不进行这项操作 ...

  8. Codeforces 611d [DP][字符串]

    /* 题意:给一个长度不超过5000的字符串,每个字符都是0到9的数字. 要求将整个字符串划分成严格递增的几个数字,并且不允许前导零. 思路: 1.很开心得发现,当我在前i个区间以后再加一个区间的时候 ...

  9. Codeforces 404D [DP]

    /* 我是一个习惯后悔,但是没办法忍受内疚感的二货== 这题是个无脑dp,但是比赛大概20min没出...其实最后5min我好好想想简单化边界条件,可以出的. 题意: 给你一个长度为1e6的由?*01 ...

随机推荐

  1. left join \ right join \ inner join 详解

    left join 和 left outer join 的区别 通俗的讲:   A   left   join   B   的连接的记录数与A表的记录数同   A   right   join   B ...

  2. P4868 天天和不可描述

    http://www.tyvj.cn/p/4868 思路: 本想用站做的,但发现要用很多站同时做,还要来回倒. 我怕超时,所以换了种做法. 因为每遇到一次括号都要把输出方向改变,而括号是成对存在的,所 ...

  3. Vue双向绑定简单实现

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. 电脑Bois中usb模式启动热键

    组装机主板 品牌笔记本 品牌台式机 主板品牌 启动按键 笔记本品牌 启动按键 台式机品牌 启动按键 华硕主板 F8 联想笔记本 F12 联想台式机 F12 技嘉主板 F12 宏基笔记本 F12 惠普台 ...

  5. 1g免费空间永久使用

    云邦互联免费空间(免备案,无广告) [1G免费全能空间,免备案,无广告] 1G全能空间 + 100M数据库(Mysql 5.5 / SQL Server 2005) 支持的脚本:ASP.PHP(5.2 ...

  6. https的网站使用百度地图的问题

    https的网站使用百度地图,如果你引用的地址没写对的话,加载不出来百度地图,被认为是不安全的JS内容. 引用的地址:http://api.map.baidu.com/api?v=2.0&ak ...

  7. Linux 网卡驱动的安装

    一.网卡驱动安装的一般思路 1.首先从硬 件安装,检查网卡本身故障 2.检查网卡芯片型号(注意不是硬件品牌) 常见的网卡芯片有Intel RC82545EM/Realtek 8139D/ Broadc ...

  8. win10 vm 11 桥接模式配置

    1 保证你Vmware里面的虚拟机是关机状态 2 在本地连接 属性中 卸载VM 桥接协议 3 管理员身份运行VM ,编辑>虚拟网络编辑器 删除所有网卡,并且重新配置网络适配器 4 配置完成后,选 ...

  9. UWP开发:存储容器设置&复合设置数据

    有时候为了将应用设置进行分类,需要创建新的容器进行存储应用设置的信息. 1,容器的创建:在一个根容器里嵌套一个新容器 1)首先获取根容器. 2)调用ApplicationDataContainer.C ...

  10. Python-OpenCV——Morphological Transformations(形态学转换)

    目标 这一节 我们将学习不同的形态学操作,如腐蚀.膨胀.开.闭...... 我们将看到不同的函数,如:cv2.erode().cv2.dilate().cv2.morphology() 理论 形态变换 ...