BZOJ1396&2865 识别子串 【后缀自动机 + 线段树】
题目

输入格式
一行,一个由小写字母组成的字符串S,长度不超过10^5
输出格式
L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长.
输入样例
agoodcookcooksgoodfood
输出样例
1
2
3
3
2
2
3
3
2
2
3
3
2
1
2
3
3
2
1
2
3
4
题解
BZOJ AC200纪念,,
这两题题干是一样的,但唯一不同的是。。后者卡空间【MLE得飞起】
先说解法:
我们知道后缀自动机上的parent树的每个节点子树中叶子的数量就是该节点表示的串的出现次数
显然我们要找的是子树叶子数为1,即代表出现次数为1的节点
parent树中的节点,要么是叶子节点,要么有至少两个儿子
由上面这个性质我们可以知道满足条件的只有叶子结点
所以我们连序都不用排了,直接统计不被父亲指针指向的节点
对于节点i,其表示的串为长度为\([step[pre[i]] + 1,step[i]]\)的串【pre为parent树父亲节点】
由于该串是唯一的,所以该串表示的最小串为后缀的子串都是唯一的
我们令其最小串为[l,r],其中\(l = step[i] - step[pre[i]],r = step[i]\)
我们分为两类:
①被最小串包含的位置[l,r],更新其最短识别长度为\(r - l + 1\)
②超出最小串的位置[1,l-1],更新其最短识别长度为\(r - i + 1\)【i为字符位置】
那么我们可以开两颗线段树分别维护①和②的最小值,最后输出时二者取最小即可【维护②的先不减i,输出时再减】
什么意思?每个位置会被两种形式的长度更新,①是一个值,②是一个值还要减去自身的位置,②不好处理,我们分开保存
T1就搞完了~~
等等,T2呢?
原来是数据范围变大了,改大,一交,雾草。。MLE
= =
何破?
①改用后缀数组【还没写】
②将ch改为map保存【好吧我就是这样A的】
T2太丢脸,贴T1代码吧,,
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define ls (u << 1)
#define rs (u << 1 | 1)
using namespace std;
const int maxn = 200005,maxm = 400005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int pre[maxn],ch[maxn][26],step[maxn],val[maxn],cnt,last,n;
char s[maxn];
void ins(int x){
int p = last,np = ++cnt;
last = np; step[np] = step[p] + 1;
while (p && !ch[p][x]) ch[p][x] = np,p = pre[p];
if (!p) pre[np] = 1;
else {
int q = ch[p][x];
if (step[q] == step[p] + 1) pre[np] = q;
else {
int nq = ++cnt; step[nq] = step[p] + 1;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
pre[nq] = pre[q]; pre[q] = pre[np] = nq;
while (ch[p][x] == q) ch[p][x] = nq,p = pre[p];
}
}
}
struct Seg{
int mn[2 * maxn],tag[2 * maxn];
Seg(){for (int i = 0; i < maxm; i++) mn[i] = tag[i] = INF;}
void pd(int u){
if (tag[u] != INF){
mn[ls] = min(mn[ls],tag[u]); tag[ls] = min(tag[ls],tag[u]);
mn[rs] = min(mn[rs],tag[u]); tag[rs] = min(tag[rs],tag[u]);
tag[u] = INF;
}
}
void modify(int u,int l,int r,int L,int R,int v){
if (L > R) return;
if (l >= L && r <= R){
mn[u] = min(mn[u],v);
tag[u] = min(tag[u],v);
return;
}
pd(u);
int mid = l + r >> 1;
if (mid >= L) modify(ls,l,mid,L,R,v);
if (mid < R) modify(rs,mid + 1,r,L,R,v);
mn[u] = min(mn[ls],mn[rs]);
}
int query(int u,int l,int r,int pos){
if (l == r) return mn[u];
pd(u);
int mid = l + r >> 1;
if (mid >= pos) return query(ls,l,mid,pos);
else return query(rs,mid + 1,r,pos);
}
}A,B;
void solve(){
REP(i,cnt) val[i] = 1;
REP(i,cnt) val[pre[i]] = 0;
REP(i,cnt) if (val[i]){
int l = step[i] - step[pre[i]],r = step[i];
A.modify(1,1,n,l,r,r - l + 1);
B.modify(1,1,n,1,l - 1,r + 1);
}
REP(i,n)
printf("%d\n",min(A.query(1,1,n,i),B.query(1,1,n,i) - i));
}
int main(){
//freopen("in.txt","r",stdin);
//freopen("out1.txt","w",stdout);
scanf("%s",s + 1);
n = strlen(s + 1); cnt = last = 1;
REP(i,n) ins(s[i] - 'a');
solve();
return 0;
}
BZOJ1396&2865 识别子串 【后缀自动机 + 线段树】的更多相关文章
- bzoj1396&&2865 识别子串 后缀自动机+线段树
Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. Sample Input agoodco ...
- BZOJ 1396&&2865 识别子串[后缀自动机 线段树]
Description 在这个问题中,给定一个字符串S,与一个整数K,定义S的子串T=S(i, j)是关于第K位的识别子串,满足以下两个条件: 1.i≤K≤j. 2.子串T只在S中出现过一次. 例如, ...
- 【BZOJ1396】识别子串 - 后缀自动机+线段树
题意: Description Input 一行,一个由小写字母组成的字符串S,长度不超过10^5 Output L行,每行一个整数,第i行的数据表示关于S的第i个元素的最短识别子串有多长. 题解: ...
- bzoj 1396/2865: 识别子串 后缀自动机+线段树
水水的字符串题 ~ #include <map> #include <cstdio> #include <cstring> #include <algorit ...
- BZOJ1396: 识别子串(后缀自动机 线段树)
题意 题目链接 Sol 后缀自动机+线段树 还是考虑通过每个前缀的后缀更新答案,首先出现次数只有一次,说明只有\(right\)集合大小为\(1\)的状态能对答案产生影响 设其结束位置为\(t\),代 ...
- BZOJ 1396 识别子串 (后缀自动机+线段树)
题目大意: 给你一个字符串S,求关于每个位置x的识别串T的最短长度,T必须满足覆盖x,且T在S中仅出现一次 神题 以节点x为结尾的识别串,必须满足它在$parent$树的子树中只有一个$endpos$ ...
- BZOJ 1396: 识别子串( 后缀数组 + 线段树 )
这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法..... 求出Height数组后, 我们枚举每一位当做子串的开头. 如上图(x, y是height值), Heigh ...
- 2018.12.23 bzoj2865&&1396: 字符串识别(后缀自动机+线段树)
传送门 卡空间差评! 题意简述:给一个字串,对于每个位置求出经过这个位置且只在字串中出现一次的子串的长度的最小值. 解法:先建出samsamsam,显然只有当sizep=1size_p=1sizep ...
- bzoj千题计划319:bzoj2865: 字符串识别(后缀自动机 + 线段树)
https://www.lydsy.com/JudgeOnline/problem.php?id=2865 同上一篇博客 就是卡卡空间,数组改成map #include<map> #inc ...
- cf666E. Forensic Examination(广义后缀自动机 线段树合并)
题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...
随机推荐
- 2018.6.6 基于Oracle数据库的航天信息系统JDBC练习
综合练习 一.语言和环境 A.实现语言 Java B.环境要求 JDK 6.0及其以上版本.MyEclipse7.5及其以上版本.Oracle11g.PL/SQL Developer 二.功能要求 开 ...
- css img 等比例自动缩放
按父容器宽度自动缩放,并且保持图片原本的长宽比 img{ width: auto; height: auto; max-width: 100%; max-height: 100%; }
- imfilter()用法
功能:对图像进行滤波. 用法: g = imfilter(f, w, filtering_mode, boundary_options, size_options) 其中,f:输入图像,w:滤波掩模, ...
- mongo 4.0以下版本 类型转换
.文档格式 "Values" : [ { "key" : "姓名", "value" : "jenny&quo ...
- PHP开发框架流行度排名:Laravel居首
摘要:在PHP开发中,选择合适的框架有助于加快软件开发,节约宝贵的项目时间,让开发者专注于功能的实现上.Sitepoint网站做了一个小的调查,结果显示最流行的PHP框架前三甲为:Laravel.Ph ...
- Vue之Vue-touch的使用
最近项目中,有的页面发现设置返回键看起来怪怪的,感觉与整体不协调,于是就考虑使用手势滑动事件来实现返回功能~ 开叉查阅资料~找到了vue-touch,使用起来可谓是简单粗暴啊,适合我这样的快速开发人员 ...
- WIFI共享大师无法开启发射功能
1.打开服务(ctrl+R)输入services.msc 2.将关于wifi的服务打开 这里有windows移动热点服务和WLAN开头的服务
- Codeforces Round #464 (Div. 2) C. Convenient For Everybody
C. Convenient For Everybody time limit per test2 seconds memory limit per test256 megabytes Problem ...
- [Uva623]500!(高精)
Description 求N! \(N \leq 1000\) Sample Input 10 30 50 100 Sample Output 10! 3628800 30! 265252859812 ...
- 线段树[To be continued]
目录 数据结构--线段树 一.定义 二.性质 三.基本操作 0.结构体 1.建树 2.单点查询 3.单点修改 4.区间修改 5.区间查询 四.题目 单点修改.区域查询模板 五.鸣谢 学姐的Blog 百 ...