题目

对于正整数n,定义f(n)为n所含质因子的最大幂指数。例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0。

给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b)。

输入格式

第一行一个数T,表示询问数。

接下来T行,每行两个数a,b,表示一个询问。

输出格式

对于每一个询问,输出一行一个非负整数作为回答。

输入样例

4

7558588 9653114

6514903 4451211

7425644 1189442

6335198 4957

输出样例

35793453939901

14225956593420

4332838845846

15400094813

提示

【数据规模】

T<=10000

1<=a,b<=10^7

题解

前面的推导很套路:

\[ans = \sum\limits_{i = 1}^{n} \sum\limits_{j = 1}^{m} f[gcd(i,j)]
\]

\[=\sum\limits_{d = 1}^{n} f[d] * \sum\limits_{i = 1}^{\lfloor \frac{n}{d} \rfloor} \sum\limits_{j = 1}^{\lfloor \frac{m}{d} \rfloor} [gcd(i,j) == 1]
\]

\[=\sum\limits_{d = 1}^{n} f[d] * \sum\limits_{i = 1}^{\lfloor \frac{n}{d} \rfloor} \mu(i) * \lfloor \frac{n}{id} \rfloor\lfloor \frac{m}{id} \rfloor
\]

\[=\sum\limits_{T = 1}^{n} \lfloor \frac{n}{T} \rfloor\lfloor \frac{m}{T} \rfloor \sum\limits_{d|T} f[d] * \mu(\frac{T}{d})
\]

后面那玩意\(g(T) = \sum\limits_{d|T} f[d] * \mu(\frac{T}{d})\)如果能预处理出来,就能\(O(T\sqrt{n})\)计算了

然后我只会\(O(nlogn)\),,,,

去膜题解

要利用\(\mu(i)\)的性质

显然\(i\)有平方项就不用考虑了

所以\(T = \prod\limits_{i = 1}^{k} p_i^{a_i}\)中每个\(a_i\)最多被取掉\(1\)

设最大为\(r\)

所以\(f(d) = r\)或\(r - 1\)

我们设有\(x\)个这样的指数为\(r\),那么剩余的\(k - x\)个质因子的指数就可以任选,有\(2^{k - x}\)中选法

如果\(k \ne x\),\(2^{k - x}\)为偶数,对应\(\mu\)的正负数量相等,最后和为\(0\)

所以只有\(k = x\)时,\(g(T) \ne 0\)

否则我们假使所有的\(f(d)\)都等于\(r\),那么和依旧为\(0\),但是实际上当\(k\)个数都被选的时候\(f(d) = r - 1\),多了一个\(-1\),根据奇偶性,最后会产生\((-1)^{k + 1}\)的贡献

所以此时\(g(T) = (-1)^{k + 1}\)

具体可以先筛出\(\mu(i)\),再由\(\mu(i) \ne 0\)的\(i\)推出所有的\(f(i^x)\),这样做每个数只会被推一次,所以是\(O(n)\)的

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 10000005,maxm = 100005,N = 1e7,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int p[maxn],pi,isn[maxn],mu[maxn];
LL g[maxn];
void init(){
mu[1] = 1;
for (int i = 2; i <= N; i++){
if (!isn[i]) p[++pi] = i,mu[i] = -1;
for (int j = 1; j <= pi && i * p[j] <= N; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0){
mu[i * p[j]] = 0;
break;
}
mu[i * p[j]] = -mu[i];
}
}
for (LL i = 2; i <= N; i++)
if (mu[i] != 0){
for (LL j = i,t = -mu[i]; j <= N; j *= i)
g[j] = t;
}
for (int i = 1; i <= N; i++) g[i] += g[i - 1];
}
int main(){
init();
int T = read(),n,m;
LL ans;
while (T--){
n = read(); m = read(); ans = 0;
if (n > m) swap(n,m);
for (int i = 1,nxt; i <= n; i = nxt + 1){
nxt = min(n / (n / i),m / (m / i));
ans += 1ll * (n / i) * (m / i) * (g[nxt] - g[i - 1]);
}
printf("%lld\n",ans);
}
return 0;
}

BZOJ3309 DZY Loves Math 【莫比乌斯反演】的更多相关文章

  1. [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)

    $\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...

  2. 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)

    [BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...

  3. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  4. bzoj 3309 DZY Loves Math 莫比乌斯反演

    DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1303  Solved: 819[Submit][Status][Dis ...

  5. 【BZOJ3309】DZY Loves Math - 莫比乌斯反演

    题意: 对于正整数n,定义$f(n)$为$n$所含质因子的最大幂指数.例如$f(1960)=f(2^3 * 5^1 * 7^2)=3$,$f(10007)=1$,$f(1)=0$. 给定正整数$a,b ...

  6. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  7. BZOJ 3309 DZY Loves Math ——莫比乌斯反演

    枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...

  8. BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]

    题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...

  9. BZOJ3309 DZY Loves Maths 莫比乌斯反演、线性筛

    传送门 推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^Mf(gcd(i,j)) & = ...

  10. bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...

随机推荐

  1. imfilter()用法

    功能:对图像进行滤波. 用法: g = imfilter(f, w, filtering_mode, boundary_options, size_options) 其中,f:输入图像,w:滤波掩模, ...

  2. Angular2的笔记

    1.如果启动项目的时候出现下列黄色的警告说明电脑安装的全局cli和项目中使用的cli版本不一致,不过不影响使用,按它的提示执行 ng set --global warnings.versionMism ...

  3. 从指定的view中截图 返回UIImage

    -(UIImage *)getImageFromView:(UIView *)view{ UIGraphicsBeginImageContext(view.bounds.size); [view.la ...

  4. CSS的垂直居中和水平居中总结

    内联元素居中方案 水平居中设置: 行内元素 设置 text-align:center: Flex布局 设置display:flex;justify-content:center;(灵活运用) 垂直居中 ...

  5. Oracle数据库学习(三)

    6.关于null 数据库中null是一个未知数,没有任何值:进行运算时使用nvl,但是结果仍为空:在聚集函数中只有全部记录为空才会返回null. 7.insert插入 (1)单行记录插入 insert ...

  6. http 工作模式与模块

    目录 http 工作模式与模块 http 服务器应用 MPM工作模式 prefork worker event 进程角色 httpd功能特性 http 安装 centos6配置目录 http 2.2 ...

  7. hprose 1.0(rpc 框架) - 关于跨域和P3P的声明

    private function sendHeader($context) { if ($this->onSendHeader !== null) { $sendHeader = $this-& ...

  8. php扩展开发-哈希表

    什么是哈希表呢?哈希表在数据结构中也叫散列表.是根据键名经过hash函数计算后,映射到表中的一个位置,来直接访问记录,加快了访问速度.在理想情况下,哈希表的操作时间复杂度为O(1).数据项可以在一个与 ...

  9. 29.VUE学习之--键盘事件.键盘修饰符的实例讲解

    键盘事件 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...

  10. [Hdu3507]Print Article(斜率优化)

    Description 题意:给N个数,按顺序全部取走,每次取一段连续的区间,代价为\((S[i]-S[j])^2+M\) 其中M为一个给定的常数,\(S[i]\)为前缀和 \(N\leq 50000 ...