生成函数又有奇妙的性质。

$F(x)=C(x)*F(x)*F(x)+1$

然后大力解方程,得到一个带根号的式子。

多项式开根有解只与常数项有关。

发现两个解只有一个是成立的。

然后多项式开根、求逆。

不太会算复杂度为什么是$n\log {n}$的。

开根号里套了一个求逆,不应该是两个$\log$?

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair
#define md 998244353
#define maxn 500005
#define g 3 int rev[maxn],n,m,C[maxn],N,l,x,Root_C[maxn],Inv_Root_C[maxn],Inv2; int ksm(int a,int b)
{
int ret=1;
for (;b;b>>=1,a=(ll)a*a%md) if (b&1) ret=(ll)ret*a%md;
return ret;
} void NTT(int *x,int n,int flag)
{
F(i,0,n-1) if (rev[i]>i) swap(x[i],x[rev[i]]);
for (int m=2;m<=n;m<<=1)
{
int wn=ksm(g,((md-1)/m*flag+md-1)%(md-1));
for (int i=0;i<n;i+=m)
{
int w=1;
for (int j=0;j<(m>>1);++j)
{
int u=x[i+j],v=(ll)x[i+j+(m>>1)]*w%md;
x[i+j]=(u+v)%md,x[i+j+(m>>1)]=(u-v+md)%md;
w=(ll)w*wn%md;
}
}
}
if (flag==-1){int inv=ksm(n,md-2);F(i,0,n-1)x[i]=(ll)x[i]*inv%md;}
}
void Get_Inv(int *a,int *b,int n)
{
static int tmp[maxn];
if (n==1) {b[0]=ksm(a[0],md-2);return;}
Get_Inv(a,b,n>>1);
F(i,0,n-1) tmp[i]=a[i],tmp[n+i]=0;
int L=0;while(!(n>>L&1))L++;
F(i,0,(n<<1)-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<L);
NTT(tmp,n<<1,1);NTT(b,n<<1,1);
F(i,0,(n<<1)-1) tmp[i]=(ll)b[i]*(2-(ll)tmp[i]*b[i]%md+md)%md;
NTT(tmp,n<<1,-1); F(i,0,n-1) b[i]=tmp[i],b[n+i]=0;
} void Get_Root(int *a,int *b,int n)
{
static int tmp[maxn],b_Inv[maxn];
if (n==1) {b[0]=1;return;}
Get_Root(a,b,n>>1);
F(i,0,n-1) b_Inv[i]=0;
Get_Inv(b,b_Inv,n);
F(i,0,n-1) tmp[i]=a[i],tmp[i+n]=0;
NTT(tmp,n<<1,1);NTT(b,n<<1,1);NTT(b_Inv,n<<1,1);
F(i,0,(n<<1)-1)
tmp[i]=(ll)Inv2*(b[i]+(ll)b_Inv[i]*tmp[i]%md)%md;
NTT(tmp,n<<1,-1);F(i,0,n-1) b[i]=tmp[i],b[n+i]=0;
} int main()
{
scanf("%d%d",&n,&m);Inv2=ksm(2,md-2);
F(i,1,n)scanf("%d",&x),C[x]=(C[x]-4+md)%md;
C[0]=1;for(N=1;N<=m;N<<=1);
Get_Root(C,Root_C,N);
Root_C[0]=(1+Root_C[0])%md;
Get_Inv(Root_C,Inv_Root_C,N);
F(i,0,100000) Inv_Root_C[i]=(ll)2*Inv_Root_C[i]%md;
F(i,1,m) printf("%d\n",Inv_Root_C[i]);
}

  

BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根的更多相关文章

  1. BZOJ 3625: [Codeforces Round #250]小朋友和二叉树

    3625: [Codeforces Round #250]小朋友和二叉树 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 304  Solved: 13 ...

  2. bzoj 3625: [Codeforces Round #250]小朋友和二叉树【NTT+多项式开根求逆】

    参考:https://www.cnblogs.com/2016gdgzoi509/p/8999460.html 列出生成函数方程,g(x)是价值x的个数 \[ f(x)=g(x)*f^2(x)+1 \ ...

  3. BZOJ3625: [Codeforces Round #250]小朋友和二叉树

    Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树.考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{ ...

  4. BZOJ3625 [Codeforces Round #250]小朋友和二叉树(生成函数+多项式开根)

    设f(n)为权值为n的神犇二叉树个数.考虑如何递推求这个东西. 套路地枚举根节点的左右子树.则f(n)=Σf(i)f(n-i-cj),cj即根的权值.卷积的形式,cj也可以通过卷上一个多项式枚举.可以 ...

  5. [BZOJ3625][Codeforces Round #250]小朋友和二叉树 多项式开根+求逆

    https://www.lydsy.com/JudgeOnline/problem.php?id=3625 愉快地列式子.设\(F[i]\)表示权值为\(i\) 的子树的方案数,\(A[i]\)为\( ...

  6. [Codeforces Round #250]小朋友和二叉树

    题目描述: bzoj luogu 题解: 生成函数ntt. 显然这种二叉树应该暴力薅掉树根然后分裂成两棵子树. 所以$f(x)= \sum_{i \in c} \sum _{j=0}^{x-c} f( ...

  7. bzoj 3625小朋友和二叉树 多项式求逆+多项式开根 好题

    题目大意 给定n种权值 给定m \(F_i表示权值和为i的二叉树个数\) 求\(F_1,F_2...F_m\) 分析 安利博客 \(F_d=F_L*F_R*C_{mid},L+mid+R=d\) \( ...

  8. 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)

    传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...

  9. 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根

    首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...

随机推荐

  1. 使用FolderBrowserDialog组件选择文件夹

    实现效果: 知识运用: FolderBrowserDialog组件的ShowDialog方法 //弹出选择路径对话框 public DialogResult ShowDialog() 和Selecte ...

  2. 5.1 Object类型

    创建Object实例的方式有两种 ① 使用new操作符跟Object构造函数 var person = new Object(); person.name = "Tom"; pei ...

  3. python_66_生成器2

    import time def consumer(name): print('%s准备吃包子 '%name) while True: baozi=yield print('包子[%s]来了,被[%s] ...

  4. css属性选择器=,~=,^=,$=,*=,|=

    http://www.w3school.com.cn/css/css_selector_attribute.asp =. property和value必须完全一致 : ~=.“约等于”?: ^=. 从 ...

  5. python 线程even

    import threading,time import random def door(nums): num=1#电梯在一楼 while True: print("this door is ...

  6. CUDA开发:了解设备属性

    原文链接 今天介绍一下CUDA设备的相关属性,只有熟悉了硬件是相关属性,是怎么工作的,就能写出更适合硬件工作的代码.cudaDeviceProp这个结构体记录了设备的相关属性. struct cuda ...

  7. JQuery的checkbox全选与全不选操作

    最主要是:子选择框要与总选择框的状态一致,即当选择总选择框时,向子选择框添加属性,使用jquery中的attr属性 例: html中的代码 <input type="checkbox& ...

  8. python之列表推导、迭代器、生成器

    http://blog.chinaunix.net/uid-26722078-id-3484197.html 1.列表推导 看几个例子,一切就明白了. #!/usr/bin/python number ...

  9. vue入门之vue-cli安装项目

    第一步先安装nmp 在node.js的官网下载即可. 第二步 直接安装刚下载好的node.js即可,(这里建议不要修改node.js的安装路径),傻瓜式直接下一步即可 检测是否安装成功: 在cmd的控 ...

  10. python 实现简单语音聊天机器人

    '''思路:使用百度的文本转音频API,将结果保存成mp3格式,并用mp3play库播放该文件.''' 1 # -*- coding:utf-8 -*- import sys import reque ...