BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根
生成函数又有奇妙的性质。
$F(x)=C(x)*F(x)*F(x)+1$
然后大力解方程,得到一个带根号的式子。
多项式开根有解只与常数项有关。
发现两个解只有一个是成立的。
然后多项式开根、求逆。
不太会算复杂度为什么是$n\log {n}$的。
开根号里套了一个求逆,不应该是两个$\log$?
#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair
#define md 998244353
#define maxn 500005
#define g 3 int rev[maxn],n,m,C[maxn],N,l,x,Root_C[maxn],Inv_Root_C[maxn],Inv2; int ksm(int a,int b)
{
int ret=1;
for (;b;b>>=1,a=(ll)a*a%md) if (b&1) ret=(ll)ret*a%md;
return ret;
} void NTT(int *x,int n,int flag)
{
F(i,0,n-1) if (rev[i]>i) swap(x[i],x[rev[i]]);
for (int m=2;m<=n;m<<=1)
{
int wn=ksm(g,((md-1)/m*flag+md-1)%(md-1));
for (int i=0;i<n;i+=m)
{
int w=1;
for (int j=0;j<(m>>1);++j)
{
int u=x[i+j],v=(ll)x[i+j+(m>>1)]*w%md;
x[i+j]=(u+v)%md,x[i+j+(m>>1)]=(u-v+md)%md;
w=(ll)w*wn%md;
}
}
}
if (flag==-1){int inv=ksm(n,md-2);F(i,0,n-1)x[i]=(ll)x[i]*inv%md;}
}
void Get_Inv(int *a,int *b,int n)
{
static int tmp[maxn];
if (n==1) {b[0]=ksm(a[0],md-2);return;}
Get_Inv(a,b,n>>1);
F(i,0,n-1) tmp[i]=a[i],tmp[n+i]=0;
int L=0;while(!(n>>L&1))L++;
F(i,0,(n<<1)-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<L);
NTT(tmp,n<<1,1);NTT(b,n<<1,1);
F(i,0,(n<<1)-1) tmp[i]=(ll)b[i]*(2-(ll)tmp[i]*b[i]%md+md)%md;
NTT(tmp,n<<1,-1); F(i,0,n-1) b[i]=tmp[i],b[n+i]=0;
} void Get_Root(int *a,int *b,int n)
{
static int tmp[maxn],b_Inv[maxn];
if (n==1) {b[0]=1;return;}
Get_Root(a,b,n>>1);
F(i,0,n-1) b_Inv[i]=0;
Get_Inv(b,b_Inv,n);
F(i,0,n-1) tmp[i]=a[i],tmp[i+n]=0;
NTT(tmp,n<<1,1);NTT(b,n<<1,1);NTT(b_Inv,n<<1,1);
F(i,0,(n<<1)-1)
tmp[i]=(ll)Inv2*(b[i]+(ll)b_Inv[i]*tmp[i]%md)%md;
NTT(tmp,n<<1,-1);F(i,0,n-1) b[i]=tmp[i],b[n+i]=0;
} int main()
{
scanf("%d%d",&n,&m);Inv2=ksm(2,md-2);
F(i,1,n)scanf("%d",&x),C[x]=(C[x]-4+md)%md;
C[0]=1;for(N=1;N<=m;N<<=1);
Get_Root(C,Root_C,N);
Root_C[0]=(1+Root_C[0])%md;
Get_Inv(Root_C,Inv_Root_C,N);
F(i,0,100000) Inv_Root_C[i]=(ll)2*Inv_Root_C[i]%md;
F(i,1,m) printf("%d\n",Inv_Root_C[i]);
}
BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根的更多相关文章
- BZOJ 3625: [Codeforces Round #250]小朋友和二叉树
3625: [Codeforces Round #250]小朋友和二叉树 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 304 Solved: 13 ...
- bzoj 3625: [Codeforces Round #250]小朋友和二叉树【NTT+多项式开根求逆】
参考:https://www.cnblogs.com/2016gdgzoi509/p/8999460.html 列出生成函数方程,g(x)是价值x的个数 \[ f(x)=g(x)*f^2(x)+1 \ ...
- BZOJ3625: [Codeforces Round #250]小朋友和二叉树
Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树.考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{ ...
- BZOJ3625 [Codeforces Round #250]小朋友和二叉树(生成函数+多项式开根)
设f(n)为权值为n的神犇二叉树个数.考虑如何递推求这个东西. 套路地枚举根节点的左右子树.则f(n)=Σf(i)f(n-i-cj),cj即根的权值.卷积的形式,cj也可以通过卷上一个多项式枚举.可以 ...
- [BZOJ3625][Codeforces Round #250]小朋友和二叉树 多项式开根+求逆
https://www.lydsy.com/JudgeOnline/problem.php?id=3625 愉快地列式子.设\(F[i]\)表示权值为\(i\) 的子树的方案数,\(A[i]\)为\( ...
- [Codeforces Round #250]小朋友和二叉树
题目描述: bzoj luogu 题解: 生成函数ntt. 显然这种二叉树应该暴力薅掉树根然后分裂成两棵子树. 所以$f(x)= \sum_{i \in c} \sum _{j=0}^{x-c} f( ...
- bzoj 3625小朋友和二叉树 多项式求逆+多项式开根 好题
题目大意 给定n种权值 给定m \(F_i表示权值和为i的二叉树个数\) 求\(F_1,F_2...F_m\) 分析 安利博客 \(F_d=F_L*F_R*C_{mid},L+mid+R=d\) \( ...
- 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)
传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...
- 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根
首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...
随机推荐
- 使用ASP.NET Web API和Web API Client Gen使Angular 2应用程序的开发更加高效
本文介绍“ 为ASP.NET Web API生成TypeScript客户端API ”,重点介绍Angular 2+代码示例和各自的SDLC.如果您正在开发.NET Core Web API后端,则可能 ...
- profix使用过程中遇到的一些问题
1.(自动 DNS 模式检测) 本地 DNS 服务可用.通过代理服务器的名称解析已禁用. 我当时遇到的问题情况是:本来是可以正常上网的,然后用软件管家进行操作后,具体我也不记得了,反正是改动了 run ...
- React后台管理系统- rc-pagination分页组件封装
1.用户列表页面使用的rc-pagination分页组件 Github地址: https://github.com/react-component/pagination 2.安装 cnpm insta ...
- 通过rsync+inotify实现数据实时备份
rsync的优点与不足 与传统的cp,scp,tar,备份方式相比,rsync具有安全性高备份迅速支持增量备份的优点,可以满足对实时性要求不高的需求,例如定期备份文件服务器数据到远端服务器,但是,当数 ...
- 生产环境LAMP搭建 - 基于 fastcgi
生产环境LAMP搭建 - 基于 fastcgi 由于在module模式,php只是已http的模块形式存在,无形中加重了http的服务负载,通常在企业架构中,使用fastcgi的模式,将所有的服务都设 ...
- JS — 实现简单的数字时钟
js实现简单的数字时钟 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> & ...
- 多线程并发测试(apache ad)
1.配置 ThreadPoolTaskExecutor bean <?xml version="1.0" encoding="UTF-8"?> ...
- Django runserver支持https
创建自签名ssl证书 1.下载软件openssl-0.9.8k_WIN32 2.解压后进入bin目录,双击打开openssl.exe,依次运行如下命令 genrsa -des3 -out server ...
- Python9-MySQL数据库安装及基本操作-day42
MySQL 单机程序(自己DB) 单机程序(共用DB)MySQL:用于管理文件的一个软件 -服务端软件 -socket服务端 -本地文件操作 -解析指令[SQL语句] -客户端软件(各种各样) -so ...
- PTA 数据结构——是否完全二叉搜索树
7-2 是否完全二叉搜索树 (30 分) 将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果. 输入格 ...