[IR课程笔记]Page Rank
主要目的:
在网络信息检索中,对每个文档的重要性作出评价。
Basic Idea:
如果有许多网页链接到某一个网页,那么这个网页比较重要。
如果某个网页被一个权重较大的网页链接,那么这个网页比较重要。
随机游走模型:
过程:1.在所有网页中,随机选择一个网页作为游走的开端。
2.然后在当前网页上的超链接中,随机选择一个超链接跳转到下一个网页。
3.大量重复1.2的过程。
重要度计算方法:

Pr(pi|p1)表示从编号为1的网页跳转到编号为i的网页的概率,其计算方式为 Pr(Pi|P1) = 1/m ,当编号为1的这个网页上有到i的连接时,否则该值为0。m表示编号为1的网页中的连接总数。

在Page Rank中,我们最终想要得到的是就是w 这个向量,在计算过程中,可以采用迭代的方法:刚开始,所有网页被访问的概率是一样的,所以w0 =(1,1,...,1)T
Iterate: wk = Bwk-1 直到我们可以认为 wk = wk-1
随机游走模型的一个问题:

Solution:
为了解决这个问题,我们引入一个阻尼系数d,假设用户在随机游走模型中,在准备浏览下一个网页的过程中,有概率为d在当前网页选择一个超链接,也有概率为1-d的可能在地址栏键入一个新网址。由此,权重计算公式更新为:

如何排序?
用户输入一个query,搜索引擎首先计算文档的相关度和重要度,将这两个值乘以相应的参数再相加,选取top-n呈现给用户。
Topic Sensetive Page Rank
Basic Idea:
用户在随机选择一个网页进行访问时,一般是选取与当前主题(topic)相同的网页。
Method:
在计算网页的重要度时,需要计算其在每一个主题上的重要度pi,用户输入一个query时,用分类器计算这个query在每个主题上的概率wi,最后计算R(P,Q)=w1p1+w2p2+..+wnpn
Basic PageRank (in matrix form)



在Topic Sensetive Page Rank 中,假设有主题分类Ci,Tj表示Ci的一个子集
下面是p的初始值,若i页面属于主题分类Ci,那么vji = 1/(Tj),否则为0。
以上式子是根据用户只会向相同主题页面跳转的规律得来的。
把v代替p带入到Basic PageRank的公式中,需要注意的是,对于每一个主题,都需要计算Rank的值
那么,得到每一个页面的每一个Rank值之后,计算每一个页面的R(P,Q)=w1p1+w2p2+..+wnpn,其中wi表示query属于i分类的概率,而Pi表示该页面在i分类上的rank值。
[IR课程笔记]Page Rank的更多相关文章
- [IR课程笔记]Hyperlink-Induced Topic Search(HITS)
两个假设 1. 好的hub pages: 好的对某个主题的hub pages 链接许多好的这个主题的authoritative pages. 2. 好的authoritative pages: 好的对 ...
- [IR课程笔记]向量空间模型(Vector Space Model)
VSM思想 把文档表示成R|v|上的向量,从而可以计算文档与文档之间的相似度(根据欧氏距离或者余弦夹角) 那么,如何将文档将文档表示为向量呢? 首先,需要选取基向量/dimensions,基向量须是线 ...
- [IR课程笔记]Web search
一. 搜索引擎 组成部分: 1. 网络爬虫(web crawler) 2. 索引系统(indexing system) 3. 搜索系统 (searching system) consideratio ...
- [IR课程笔记]Query Refinement and Relevance Feedback
相关反馈的两种类型: “真实”的相关反馈: 1. 系统返回结果 2. 用户提供一些反馈 3. 系统根据这些反馈,返回一些不同的,更好的结果 “假定”的相关反馈 1. 系统得到结果但是并不返回结果 2. ...
- [IR课程笔记]概率检索模型
几个符号意义: R:相关文档集 NR:不相关文档集 q:用户查询 dj:文档j 1/0风险情况 PRP(probability ranking principle):概率排序原理,利用概率模型来估计每 ...
- [IR课程笔记]统计语言模型
Basic idea 1.一个文档(document)只有一个主题(topic) 2.主题指的是这个主题下文档中词语是如何出现的 3.在某一主题下文档中经常出现的词语,这个词语在这个主题中也是经常出现 ...
- [北航矩阵理论A]课程笔记
[北航矩阵理论A]课程笔记 一.特征值 特征根相关: 设任一方阵 \(A = (a_{ij})_{n\times n} \in C^{n\times n}\) 特征多项式 \(T(\lambda)=| ...
- CS231n课程笔记翻译1:Python Numpy教程
译者注:本文智能单元首发,翻译自斯坦福CS231n课程笔记Python Numpy Tutorial,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客翻译完成,Flood Sung ...
- vue—你必须知道的 js数据类型 前端学习 CSS 居中 事件委托和this 让js调试更简单—console AMD && CMD 模式识别课程笔记(一) web攻击 web安全之XSS JSONP && CORS css 定位 react小结
vue—你必须知道的 目录 更多总结 猛戳这里 属性与方法 语法 计算属性 特殊属性 vue 样式绑定 vue事件处理器 表单控件绑定 父子组件通信 过渡效果 vue经验总结 javascript ...
随机推荐
- hdu 5438(类似拓扑排序)
Ponds Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Sub ...
- kswapd0 进程 设置 swap
kswapd0是虚拟内存管理中,负责换页,说白了就是你的物理内存不够用了 现在的服务器,一般内存都很高,所有很少使用 swap 分区了 这时候考虑的两种处理办法 加大物理内存 或者 增加swap分 ...
- js-触屏滑动判断滑动方向(移动版)
var startx, starty; //获得角度 function getAngle(angx, angy) { return Math.atan2(angy, angx) * 180 / ...
- Codeforces Gym - 101147J Whistle's New Car
Discription Statements Whistle has bought a new car, which has an infinite fuel tank capacity. He di ...
- C# 将 WebService 封装成动态库
C# 将 WebService 封装成动态库 服务与服务之间的远程调用,经常会通过Web Service来实现,Web Service是支持跨语言调用的,可以是java调用c++或c#调用java等, ...
- C# MD5加密(16进制)
MD5加密(16进制) vs会提示引用 using System.Security.Cryptography; 代码如下: public static string MD5Encrypt32(stri ...
- PyTorch学习笔记之n-gram模型实现
import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as ...
- PyTorch框架+Python 3面向对象编程学习笔记
一.CNN情感分类中的面向对象部分 sparse.py super(Embedding, self).__init__() 表示需要父类初始化,即要运行父类的_init_(),如果没有这个,则要自定义 ...
- Eclipse工程中Java Build Path中的JDK版本和Java Compiler Compiler compliance level的区别(转)
在这里记录一下在eclipse中比较容易搞混淆和设置错误的地方.如下图所示的功能: 最精准的解释如下: Build Path是运行时环境 Compiler是编译时环境 假设,你的代码用到泛型,Bu ...
- 深刻理解JavaScript---闭包
JavaScript 闭包是指那些能够访问独立(自由)变量的函数 (变量在本地使用,但定义在一个封闭的作用域中).换句话说,这些函数可以“记忆”它被创建时候的环境.——这句话其实有点难以理解.我觉 ...