题目描述

你的公司接到了一批订单。订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件。公司共有m名员工,员工被编号为1~m员工能够制造的产品种类有所区别。一件产品必须完整地由一名员工制造,不可以由某名员工制造一部分配件后,再转交给另外一名员工继续进行制造。

我们用一个由0和1组成的m*n的矩阵A来描述每名员工能够制造哪些产品。矩阵的行和列分别被编号为1~m和1~n,Ai,j为1表示员工i能够制造产品j,为0表示员工i不能制造产品j。

如果公司分配了过多工作给一名员工,这名员工会变得不高兴。我们用愤怒值来描述某名员工的心情状态。愤怒值越高,表示这名员工心情越不爽,愤怒值越低,表示这名员工心情越愉快。员工的愤怒值与他被安排制造的产品数量存在某函数关系,鉴于员工们的承受能力不同,不同员工之间的函数关系也是有所区别的。

对于员工i,他的愤怒值与产品数量之间的函数是一个Si+1段的分段函数。当他制造第1~Ti,1件产品时,每件产品会使他的愤怒值增加Wi,1,当他制造第Ti,1+1~Ti,2件产品时,每件产品会使他的愤怒值增加Wi,2……为描述方便,设Ti,0=0,Ti,si+1=+∞,那么当他制造第Ti,j-1+1~Ti,j件产品时,每件产品会使他的愤怒值增加Wi,j, 1≤j≤Si+1。

你的任务是制定出一个产品的分配方案,使得订单条件被满足,并且所有员工的愤怒值之和最小。由于我们并不想使用Special Judge,也为了使选手有更多的时间研究其他两道题目,你只需要输出最小的愤怒值之和就可以了。

输入

第一行包含两个正整数m和n,分别表示员工数量和产品的种类数;

第二行包含n 个正整数,第i个正整数为Ci

以下m行每行n 个整数描述矩阵A;

下面m个部分,第i部分描述员工i的愤怒值与产品数量的函数关系。每一部分由三行组成:第一行为一个非负整数Si,第二行包含Si个正整数,其中第j个正整数为Ti,j,如果Si=0那么输入将不会留空行(即这一部分只由两行组成)。第三行包含Si+1个正整数,其中第j个正整数为Wi,jWi,j<Wi,j+1

输出

仅输出一个整数,表示最小的愤怒值之和。

样例输入

2 3
2 2 2
1 1 0
0 0 1
1
2
1 10
1
2
1 6

样例输出

24


题解

费用流

由于题目中限定了W(i,j)<W(i,j+1),因此可以直接拆边费用流。

那么建图很显然:S->每种产品,容量为Ci,费用为0;每种产品->能够生产它的人,容量为inf,费用为0;每个人->T连Si+1条边,第i条边容量为Ti - Ti-1,费用为Wi。

然后跑最小费用最大流即可。注意需要开long long

一个小优化:边上的费用只出现在与S/T之一相连的边中,这种情况下把带边权的边放到T一端能够大大减小时间复杂度,这也使得本题直接使用EK费用流即可AC。

#include <queue>
#include <cstdio>
#include <cstring>
#define N 510
#define M 1000010
using namespace std;
const int inf = 1 << 30;
queue<int> q;
int temp[10] , head[N] , to[M] , val[M] , cost[M] , next[M] , cnt = 1 , s , t , dis[N] , from[N] , pre[N];
void add(int x , int y , int v , int c)
{
to[++cnt] = y , val[cnt] = v , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
}
bool spfa()
{
int x , i;
memset(from , -1 , sizeof(from));
memset(dis , 0x3f , sizeof(dis));
dis[s] = 0 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
if(val[i] && dis[to[i]] > dis[x] + cost[i])
dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
}
return ~from[t];
}
long long mincost()
{
long long ans = 0;
int i , k;
while(spfa())
{
k = inf;
for(i = t ; i != s ; i = from[i]) k = min(k , val[pre[i]]);
ans += k * dis[t];
for(i = t ; i != s ; i = from[i]) val[pre[i]] -= k , val[pre[i] ^ 1] += k;
}
return ans;
}
int main()
{
int m , n , i , j , k , x;
scanf("%d%d" , &m , &n) , s = 0 , t = n + m + 1;
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , add(s , i , x , 0);
for(i = 1 ; i <= m ; i ++ )
{
for(j = 1 ; j <= n ; j ++ )
{
scanf("%d" , &x);
if(x) add(j , i + n , inf , 0);
}
}
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d" , &k);
for(j = 1 ; j <= k ; j ++ ) scanf("%d" , &temp[j]);
temp[k + 1] = inf;
for(j = 1 ; j <= k + 1 ; j ++ ) scanf("%d" , &x) , add(i + n , t , temp[j] - temp[j - 1] , x);
}
printf("%lld\n" , mincost());
return 0;
}

【bzoj2245】[SDOI2011]工作安排 费用流的更多相关文章

  1. [bzoj2245][SDOI2011]工作安排——费用流

    题目大意: 传送门 题解: 很容易建模,把每一个工作人员拆成两个点,由第一个点向第二个点连S+1条边即可. 这水题没什么难度,主要是longlong卡的丧心病狂... 代码 #include < ...

  2. BZOJ 2245: [SDOI2011]工作安排( 费用流 )

    费用流模板题..限制一下不同愤怒值的工作数就可以了. ------------------------------------------------------------------------- ...

  3. P2488 [SDOI2011]工作安排 费用流

    \(\color{#0066ff}{ 题目描述 }\) 你的任务是制定出一个产品的分配方案,使得订单条件被满足,并且所有员工的愤怒值之和最小.由于我们并不想使用Special Judge,也为了使选手 ...

  4. [bzoj2245][SDOI2011]工作安排(费用流)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2245 分析: 要注意到题目下面说的w是单增的 明显的费用流: 弄个源点S,汇点T S连 ...

  5. bzoj2245: [SDOI2011]工作安排

    费用流. 这道题的模型比较明显,拆点也是很容易看出来的. #include<cstdio> #include<algorithm> #include<cstring> ...

  6. BZOJ 2245 SDOI 2011 工作安排 费用流

    题目大意:有一些商品须要被制造.有一些员工.每个员工会做一些物品,然而这些员工做物品越多,他们的愤慨值越大,这满足一个分段函数.给出哪些员工能够做哪些东西,给出这些分段函数,求最小的愤慨值以满足须要被 ...

  7. BZOJ2245 [SDOI2011]工作安排 【费用流】

    题目 你的公司接到了一批订单.订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件.公司共有m名员工,员工被编号为1~m员工能够制造的产品种类有所区别.一件产品必须完整地由一名 ...

  8. 【BZOJ2245】[SDOI2011]工作安排(费用流)

    [BZOJ2245][SDOI2011]工作安排(费用流) 题面 BZOJ 洛谷 题解 裸的费用流吧. 不需要拆点,只需要连边就好了,保证了\(W_j<W_{j+1}\). #include&l ...

  9. 【BZOJ2245】[SDOI2011]工作安排 拆边费用流

    [BZOJ2245][SDOI2011]工作安排 Description 你的公司接到了一批订单.订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件.公司共有m名员工,员工被 ...

随机推荐

  1. UVALive 4727 Jump(约瑟夫环,递推)

    分析: 如果问题是要求最后一个删除的数,重新编号为0到n-1,f[n]表示答案,那么f[n] = (f[n-1]+k)%n. 因为删掉下标k-1以后可以从下标k重新编号为0. 在这个问题只需要推出最后 ...

  2. POJ-3080 Blue Jeans---字符串+暴力

    题目链接: https://vjudge.net/problem/POJ-3080 题目大意: 找最长的公共字串(长度>=3),长度相同就找字典序最小的 解题思路: 枚举第一个串的所以子串,处理 ...

  3. 面试中常见的 MySQL 考察难点和热点

    基本架构 MySQL是典型的三层架构模式,在平常使用中对MySQL问题排查和优化,也应该针对具体问题,从对应的层解决问题 服务层:经典的C/S架构,主要是处理连接和安全验证. 核心层:处理MySQL核 ...

  4. 2018.6.27 Ajax实现异步刷新

    Servlet获取URL地址.在HttpServletRequest类里,有以下六个取URL的函数: getContextPath 取得项目名 getServletPath 取得Servlet名 ge ...

  5. javascript同步和异步的区别与实现方式

    javascript语言是单线程机制.所谓单线程就是按次序执行,执行完一个任务再执行下一个. 对于浏览器来说,也就是无法在渲染页面的同时执行代码. 单线程机制的优点在于实现起来较为简单,运行环境相对简 ...

  6. python3安装pip

    wget --no-check-certificate https://pypi.python.org/packages/source/p/pip/pip-8.0.2.tar.gz#md5=3a73c ...

  7. vue中的过滤器

    过滤器 过滤器规则 Vue.js 允许你自定义过滤器,可被用于一些常见的文本格式化.过滤器可以用在两个地方: 双花括号插值{{}}和 v-bind 表达式 (后者从 2.1.0+ 开始支持).过滤器应 ...

  8. 【luogu P3608 [USACO17JAN]Balanced Photo平衡的照片】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3608 乍一看很容易想到O(N^2)的暴力. 对于每个H[i]从i~i-1找L[i]再从i+1~n找R[i], ...

  9. Redis学习记录(二)

    1.Key命令 设置key的过期时间. expire key second:设置key的过期时间 ttl key:查看key的有效期(如果显示正数说明该key正在倒计时,如果是-1说明该key永久保存 ...

  10. Java异常处理的9个最佳实践

    无论你是新手还是资深程序员,复习下异常处理的实践总是一件好事,因为这能确保你与你的团队在遇到问题时能够处理得了它. 在 Java 中处理异常并不是一件易事.新手觉得处理异常难以理解,甚至是资深开发者也 ...