题目大意

  有一个长度为序列 \(a\),其中某些位置的值是 \(-1\)。

  你要把 \(a\) 补成一个排列。

  定义 \(b_i=\min(a_{2i-1},a_{2i})\),求有多少种可能的 \(b\)。

  \(n\leq 300\)

题解

  如果 \(a_{2i-1}\) 和 \(a_{2i}\) 都有值,就把这两个位置扔掉。

  记 \(c_i\) 表示 \(i\) 这个值是否在初始的 \(a\) 中。

  从后往前DP。记 \(f_{i,j,k}\) 表示已经处理完了 \(i\) 后面的数,有多少个 \(j>i,c_j=1\) 的数匹配的是 \(\leq i\) 的数,有多少个 \(j>i,c_j=0\) 的数匹配的是 \(\leq i\) 的数。

  如果 \(c_i=1\) 且往后匹配的是 \(c_j=0\),那么方案数为 \(1\)。(因为 \(\min=i\))

  如果 \(c_i=0\) 且往后匹配的是 \(c_j=0\),那么先暂定方案数为 \(1\)。(因为暂时不能确定 \(i\) 填在哪个位置。)记这种匹配对数为 \(cnt\)。

  如果 \(c_i=0\) 且往后匹配的是 \(c_j=1\),那么方案数为 \(j\)。(因为可以确定 \(i\) 填在哪个位置。)

  最后方案数要乘上 \(cnt!\),因为这些位置的 \(b\) 可以随便交换。

  时间复杂度:\(O(n^3)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<functional>
#include<cmath>
#include<vector>
#include<assert.h>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
void open2(const char *s){
#ifdef DEBUG
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const ll p=1000000007;
const int N=310;
void add(ll &a,ll b)
{
a=(a+b)%p;
}
int n;
int a[2*N];
ll f[2*N][N][N];
int b[2*N];
int c[2*N];
int t;
int main()
{
open2("f");
scanf("%d",&n);
for(int i=1;i<=2*n;i++)
scanf("%d",&a[i]);
int cnt=0;
for(int i=1;i<=2*n;i+=2)
if(a[i]!=-1&&a[i+1]!=-1)
b[a[i]]=b[a[i+1]]=2;
else if(a[i]!=-1)
b[a[i]]=1;
else if(a[i+1]!=-1)
b[a[i+1]]=1;
else
cnt++;
for(int i=1;i<=2*n;i++)
if(b[i]==1)
c[++t]=1;
else if(b[i]==0)
c[++t]=2;
f[t][0][0]=1;
for(int i=t;i>=1;i--)
for(int j=0;j<=t&&j<=n;j++)
for(int k=0;k<=t&&k<=n;k++)
if(c[i]==1)
{
add(f[i-1][j+1][k],f[i][j][k]);
if(k)
add(f[i-1][j][k-1],f[i][j][k]);
}
else
{
add(f[i-1][j][k+1],f[i][j][k]);
if(k)
add(f[i-1][j][k-1],f[i][j][k]);
if(j)
add(f[i-1][j-1][k],f[i][j][k]*j);
}
ll ans=f[0][0][0];
for(int i=1;i<=cnt;i++)
ans=ans*i%p;
printf("%lld\n",ans);
return 0;
}

【AGC030F】Permutation and Minimum DP的更多相关文章

  1. 【agc030f】Permutation and Minimum(动态规划)

    [agc030f]Permutation and Minimum(动态规划) 题面 atcoder 给定一个长度为\(2n\)的残缺的排列\(A\),定义\(b_i=min\{A_{2i-1},A_{ ...

  2. 【AGC030F】Permutation and Minimum(DP)

    题目链接 题解 首先可以想到分组后,去掉两边都填了数的组. 然后就会剩下\((-1,-1)\)和\((-1,x)\)或\((x,-1)\)这两种情况 因为是最小值序列的情况数,我们可以考虑从大到小填数 ...

  3. 【BZOJ4712】洪水(动态dp)

    [BZOJ4712]洪水(动态dp) 题面 BZOJ 然而是权限题QwQ,所以粘过来算了. Description 小A走到一个山脚下,准备给自己造一个小屋.这时候,小A的朋友(op,又叫管理员)打开 ...

  4. 【题解】Jury Compromise(链表+DP)

    [题解]Jury Compromise(链表+DP) 传送门 题目大意 给你\(n\le 200\)个元素,一个元素有两个特征值,\(c_i\)和\(d_i\),\(c,d \in [0,20]\), ...

  5. 【题解】Making The Grade(DP+结论)

    [题解]Making The Grade(DP+结论) VJ:Making the Grade HNOI-D2-T3 原题,禁赛三年. 或许是我做过的最简单的DP题了吧(一遍过是什么东西) 之前做过关 ...

  6. 【题解】NOIP2017逛公园(DP)

    [题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n​节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...

  7. 【题解】284E. Coin Troubles(dp+图论建模)

    [题解]284E. Coin Troubles(dp+图论建模) 题意就是要你跑一个完全背包,但是要求背包的方案中有个数相对大小的限制 考虑一个\(c_i<c_j\)的限制,就是一个\(c_i\ ...

  8. 【LeetCode】153. Find Minimum in Rotated Sorted Array 解题报告(Python)

    [LeetCode]153. Find Minimum in Rotated Sorted Array 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode. ...

  9. 【LeetCode】154. Find Minimum in Rotated Sorted Array II 解题报告(Python)

    [LeetCode]154. Find Minimum in Rotated Sorted Array II 解题报告(Python) 标签: LeetCode 题目地址:https://leetco ...

随机推荐

  1. linux-2.6.18源码分析笔记---中断

    一.中断初始化 中断的一些硬件机制不做过多的描述,只介绍一些和linux实现比较贴近的机制,便于理解代码. 1.1 关于intel和linux几种门的简介 intel提供了4种门:系统门,中断门,陷阱 ...

  2. web scraper 抓取分页数据和二级页面内容

    如果是刚接触 web scraper 的,可以看第一篇文章. web scraper 是一款免费的,适用于普通用户(不需要专业 IT 技术的)的爬虫工具,可以方便的通过鼠标和简单配置获取你所想要数据. ...

  3. Java并发编程实战 之 对象的共享

    上一篇介绍了如何通过同步多个线程避免同一时刻访问相同数据,本篇介绍如何共享和发布对象,使它们被安全地由多个进程访问. 1.可见性 通常,我们无法保证执行读操作的线程能看到其他线程写入的值,因为每个线程 ...

  4. 在java中如何实现字符串的反转

    如 "abcdt" 反转之后是 "tdcba" 思路1: 运用递归的方法进行反转 假设反转方法为 reverseString(String str)1)当字符串 ...

  5. js之制作简易红绿灯

    HTML代码: 在一个div容器内,设置3个span <body> <div id="i1"> <span class="light red ...

  6. footer固定在页面底部的实现方法总结

    方法一:footer高度固定+绝对定位 HTML代码: <body> <header>头部</header> <main>中间内容</main&g ...

  7. Retrofit+MVP框架封装记录篇

    当下最流行的网络请求组合,retrofit2+okhttp+rxjava+mvp 这里是封装记录篇 首先分模块,比如登录 先来说封装后的使用 package com.fragmentapp.login ...

  8. 数据库微信特殊表情编码django设置

    #settings.py DATABASES = { 'default': { 'OPTIONS': { "init_command":"SET foreign_key_ ...

  9. nginx平滑升级(1.14--1.15)

    查看旧版nginx编译参数 [root@localhost yum.repos.d]# nginx -V nginx version: nginx/1.14.2 built by gcc 4.8.5 ...

  10. 各种raid对比

    级别 最少单元 特征 冗余 性能 空间利用率 综合评价 RAID0 1 分片分散存入 否 读写2倍 100% 分散存储,任何一块坏掉数据则不完整 RAID1 2 相同数据存入2个磁盘 是 写不变,读快 ...