Description

P3687 [ZJOI2017]仙人掌 - 洛谷 | 计算机科学教育新生态

Solution

我们先考虑只有一棵树如何处理.

仙人掌可以看做若干环的集合. 特别的, 对于一条没有环的边, 可以加上重边, 那么这个边和它的重边构成一个环.

对于树来说, 问题就可以转化为求加上若干条边, 使树上的每一条边在且仅在一个环内的方案数.

去掉加的边, 也就是说求用若干条边不相交的链将整个树覆盖的方案数.

考虑树形dp.

设 \(f_i\) 表示考虑 \(i\) 的子树与 \(i\) 连向父亲的边, 用若干条边不相交的链覆盖的方案数;

\(g_n\) 表示一个点连出 \(n\) 条边, 用若干条边不相交的链覆盖的方案数, 也就是说, 将 \(n\) 条边两两匹配或者单独留下的方案数.

考虑最后一条边是否匹配, 我们可以得出 \(g_i\) 的通项:

\[g_i = g_{i-1} + g_{i-2} \cdot (i-1)
\]

然后求 \(f_i\):

对于非根的点 \(i\), 它连出了 \(|child(i)| + 1\) 条边. 可以考虑将 \(f_j\) 连向父亲的边两两匹配或者单独留下, 根据乘法原理, 有

\[f_i = \prod_{j \in child(i)} f_j \cdot g_{|child(i)| + 1}
\]

对于\(i = rt\), 它没有连向父亲的边, 因此

\[f_i = \prod_{j \in child(i)} f_j \cdot g_{|child(i)|}
\]

答案即为 \(f_{rt}\).

最后考虑其他的图怎么做:

如果不是仙人掌, 答案为0;

如果图是仙人掌:

对于仙人掌的一个环上的两点 \(p\) 和 \(q\), 显然不能再加边使它们在环外联通. 因此, 我们可以去掉所有的环, 对于剩下的每棵树分别求出答案, 对答案相乘即可.

Code

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll; //---------------------------------------
const int nsz=5e5+50,msz=1e6+50;
const ll nmod=998244353;
int t,n,m; struct te{int t,pr,del;}edge[msz*2];
int hd[nsz],pe=1;
#define forg(p,i,v) for(int i=hd[p],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t)
void adde(int f,int t){edge[++pe]=(te){t,hd[f],0};hd[f]=pe;}
void adddb(int f,int t){adde(f,t);adde(t,f);} ll g[nsz];
void init(int bnd){
g[0]=1,g[1]=1;
rep(i,2,bnd)g[i]=(g[i-1]+g[i-2]*(i-1))%nmod;
} int vis[nsz],stkp[nsz],stk[nsz],top=0;
bool solcactus(int p,int e0){
stk[++top]=e0^1,stkp[p]=top,vis[p]=1;
forg(p,i,v){
if(i==e0)continue;
if(vis[v]){//cir
if(stkp[v]>stkp[p])continue;
edge[i].del=edge[i^1].del=1;
rep(j,stkp[v]+1,stkp[p]){
if(edge[stk[j]].del)return 0;
edge[stk[j]].del=edge[stk[j]^1].del=1;
}
continue;
}
if(solcactus(v,i^1)==0)return 0;
}
--top;
return 1;
} ll dp[nsz];
void dfs(int p,int fa){
dp[p]=1,vis[p]=1;
int cnt=0;
forg(p,i,v){
if(v==fa||edge[i].del)continue;
dfs(v,p);
dp[p]=dp[p]*dp[v]%nmod;
++cnt;
}
dp[p]=dp[p]*(fa==0?g[cnt]:g[cnt+1])%nmod;
} ll sol(){
memset(vis,0,(n+10)*sizeof(int));
top=0;
if(solcactus(1,0)==0)return 0;
memset(vis,0,(n+10)*sizeof(int));
ll res=1;
rep(i,1,n){
if(vis[i]==0)dfs(i,0),res=res*dp[i]%nmod;
}
return res;
} void init1(int n){
memset(hd,0,(n+10)*sizeof(int));
pe=1;
} int main(){
ios::sync_with_stdio(0),cin.tie(0);
init(5e5+50);
cin>>t;
rep(cs,1,t){
cin>>n>>m;
init1(n);
int a,b;
rep(i,1,m)cin>>a>>b,adddb(a,b);
cout<<sol()<<'\n';
}
return 0;
}

luogu3687-[ZJOI2017] 仙人掌的更多相关文章

  1. 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)

    [BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...

  2. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  3. bzoj4784 [Zjoi2017]仙人掌

    Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得 ...

  4. ●洛谷P3687 [ZJOI2017]仙人掌

    题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来 ...

  5. 【做题】ZJOI2017仙人掌——组合计数

    原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...

  6. LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】

    题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...

  7. zjoi2017 仙人掌

    题解: 好难的dp啊...看题解看了好久才看懂 http://blog.csdn.net/akak__ii/article/details/65935711 如果一开始的图就不是仙人掌,答案显然为0, ...

  8. 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)

    传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi​表示把iii为根的子树加边形成仙人掌的方案数. ...

  9. BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)

    首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...

  10. 【题解】ZJOI2017仙人掌

    感觉这题很厉害啊,虽然想了一天多但还是失败了……(:д:) 这题首先注意到给定图中如果存在环其实对于答案是没有影响的.然后关键之处就在于两个 \(dp\) 数组,其中 \(f[u]\) 表示以 \(u ...

随机推荐

  1. Asp.Net Core微服务初体验

    ASP.Net Core的基本配置 .在VS中调试的时候有很多修改Web应用运行端口的方法.但是在开发.调试微服务应用的时候可能需要同时在不同端口上开启多个服务器的实例,因此下面主要看看如何通过命令行 ...

  2. 【带着canvas去流浪(5)】绘制K线图

    目录 一. 任务说明 二. 重点提示 三. 示例代码 示例代码托管在:http://www.github.com/dashnowords/blogs 博客园地址:<大史住在大前端>原创博文 ...

  3. .net core 使用MD5加密解密字符串

    /// <summary> /// 加密 /// </summary> /// <param name="Text">要加密的文本</pa ...

  4. ubuntu 安装vm-tool

    1.“虚拟机”->“安装vmware tools”VMware tools 2. 新建一个文件夹 ,打开vmware tools安装介质.右键选择vmwaretools的gz压缩包,选择“提取到 ...

  5. 关于HTTPS的简要内容

    HTTPS是什么? 超文本传输安全协议(英语:Hypertext Transfer Protocol Secure,缩写:HTTPS,常称为HTTP over TLS,HTTP over SSL或HT ...

  6. 解决select2 在modal中搜索框无效的问题

    $.fn.modal.Constructor.prototype.enforceFocus = function() {};

  7. STL源码剖析-vector

    STL(Standard Template Library) C++标准模板库,acm选手一定对它不陌生,除了算法,那几乎是“吃饭的家伙了”.我们使用库函数非常方便,且非常高效(相对于自己实现来说). ...

  8. node.js微信小程序配置消息推送

    在开发微信小程序时,有一个消息推送,它的解释是这样的. 消息推送具体的内容是下面的这个网址   https://developers.weixin.qq.com/miniprogram/dev/fra ...

  9. ext组件中的查询

    组件中的查询依赖于组件树,往上可追溯父组件,往下可查找子组件. 组件中的查询主要包括8个方法:up.down.query.child.nextNode.nextSibiling.previoutNod ...

  10. ORA-04030: out of process memory when trying to allocate 152 bytes (Logminer LCR c,krvtadc)

    今天使用LogMiner找回误更新的数据时,查询v$logmnr_contents时,遇到了"ORA-04030: out of process memory when trying to ...