题目链接:Tree with Maximum Cost

题意:给定一棵树,树上每个顶点都有属性值ai,树的边权为1,求$\sum\limits_{i = 1}^{n} dist(i, v) \cdot a_i$,$dist(i, v) $为顶点i到顶点v的距离。该顶点v可以任意选择。

题解:O(n^2)的做法:从每个顶点跑一遍DFS,计算贡献值,并更新答案。(超时)

我们可以先计算出从顶点1跑的答案,发现顶点之间贡献的转移为$ans[u]=ans[fa]+(all-sum[u])-sum[u]$。(all为$\sum\limits_{i = 1}^{n} a_i$)

该顶点的上半部分贡献值增加(all-sum[u]),下半部分贡献值减少(sum[u])。

 #include <set>
#include <map>
#include <queue>
#include <deque>
#include <stack>
#include <cmath>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <fstream>
#include <iostream>
#include <algorithm>
using namespace std; #define eps 1e-8
#define pb push_back
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define clr(a,b) memset(a,b,sizeof(a)
#define bugc(_) cerr << (#_) << " = " << (_) << endl
#define FAST_IO ios::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL) const int N=2e5+;
typedef long long ll;
typedef unsigned long long ull;
ll a[N],sum[N],res,cnt,ans[N]; vector <int> E[N]; void dfs(int u,int fa,ll len){
res+=len*a[u];
sum[u]=a[u];
for(int i=;i<E[u].size();i++){
int v=E[u][i];
if(v==fa) continue;
dfs(v,u,len+);
sum[u]+=sum[v];
}
} void DFS(int u,int fa){
if(fa!=) ans[u]=ans[fa]+cnt-*sum[u];
for(int i=;i<E[u].size();i++){
int v=E[u][i];
if(v==fa) continue;
DFS(v,u);
}
} int main(){
FAST_IO;
int n;
cin>>n;
for(int i=;i<=n;i++) cin>>a[i],cnt+=a[i];
for(int i=;i<n;i++){
int u,v;
cin>>u>>v;
E[u].push_back(v);
E[v].push_back(u);
}
dfs(,,);
ans[]=res;
DFS(,);
cout<<*max_element(ans+,ans++n)<<endl;
return ;
}

Codeforces 1092F Tree with Maximum Cost(树形DP)的更多相关文章

  1. Codeforces Round #527 F - Tree with Maximum Cost /// 树形DP

    题目大意: 给定一棵树 每个点都有点权 每条边的长度都为1 树上一点到另一点的距离为最短路经过的边的长度总和 树上一点到另一点的花费为距离乘另一点的点权 选定一点出发 使得其他点到该点的花费总和是最大 ...

  2. CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。

    题目意思: 给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大.输出最大的值. ...

  3. 2018.12.19 codeforces 1092F. Tree with Maximum Cost(换根dp)

    传送门 sbsbsb树形dpdpdp题. 题意简述:给出一棵边权为1的树,允许选任意一个点vvv为根,求∑i=1ndist(i,v)∗ai\sum_{i=1}^ndist(i,v)*a_i∑i=1n​ ...

  4. Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】

    传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...

  5. CF1092 --- Tree with Maximum Cost

    CF1324 --- Maximum White Subtree 题干 You are given a tree consisting exactly of \(n\) vertices. Tree ...

  6. Codeforces 671D. Roads in Yusland(树形DP+线段树)

    调了半天居然还能是线段树写错了,药丸 这题大概是类似一个树形DP的东西.设$dp[i]$为修完i这棵子树的最小代价,假设当前点为$x$,但是转移的时候我们不知道子节点到底有没有一条越过$x$的路.如果 ...

  7. Codeforces 219D - Choosing Capital for Treeland(树形dp)

    http://codeforces.com/problemset/problem/219/D 题意 给一颗树但边是单向边,求至少旋转多少条单向边的方向,可以使得树上有一点可以到达树上任意一点,若有多个 ...

  8. codeforces 633F The Chocolate Spree (树形dp)

    题目链接:http://codeforces.com/problemset/problem/633/F 题解:看起来很像是树形dp其实就是单纯的树上递归,就是挺难想到的. 显然要求最优解肯定是取最大的 ...

  9. codeforces 486 D. Valid Sets(树形dp)

    题目链接:http://codeforces.com/contest/486/problem/D 题意:给出n个点,还有n-1条边的信息,问这些点共能构成几棵满足要求的树,构成树的条件是. 1)首先这 ...

随机推荐

  1. Office组件无法正常使用的解决方法

    问题与现象     开发时调用Office组件,代码编译是通过的,但在运行时当ApplicationClass对象初始化后程序出现异常.     异常信息如下:     无法将类型为“Microsof ...

  2. [PHP] MIME邮件协议的multipart类型

    邮件协议中的三种情况,对应下面的三种类型 multipart/mixed可以包含附件.multipart/related可以包含内嵌资源.multipart/alternative 纯文本与超文本共存 ...

  3. webpack4.x笔记-配置基本的前端开发环境(一)

    webpack的基本使用 webpack 本质上是一个打包工具,它会根据代码的内容解析模块依赖,帮助我们把多个模块的代码打包.借用 webpack 官网的图片: 虽然webpack4.x的版本可以零配 ...

  4. react异步加载组件

    1. 创建 asyncComponent 异步加载工具 import React from 'react' function asyncComponent(loadComponent){ class ...

  5. 一种动态写入apk数据的方法(用于用户关系绑定、添加渠道号等)

    背景: 正在开发的APP需要记录业务员与客户的绑定关系.具体应用场景如下: 由流程图可知,并没有用户填写业务人员信息这一步,因此在用户下载的APP中就已经携带了业务人员的信息. 由于业务人员众多,不可 ...

  6. 关于Android Studio 3.2 运行应用时提示 “Instant Run requires that the platform corresponding to your target device (Android 7.0 (Nougat)) is installed.” 的说明

    点击"Run",运行App后,Android Studio显示如图1-1界面: 图1-1 这是因为你连接的外部设备(比如Android手机或AVD)的SDK版本在你的电脑上没有安装 ...

  7. 通用HttpClientUtil工具类

    package com.*.utils; import java.io.IOException; import java.net.URI; import java.util.ArrayList; im ...

  8. RobotFramework第一篇之环境搭建

    定义:是一款python编写的功能自动化测试框架,具备良好的扩展性,可以进行分布性测试 1:对编程能力要求低,容易上手 2:关键字调用方式,已经定义好的功能,只需要去调用它,一个关键字实现了一个功能, ...

  9. 虚拟机安装windows7 VMware12 安装window7

    闲来无事就来搞虚拟机装操作系统!期间出现很多错误,分享一下 一.安装虚拟机 二.准备安装的镜像文件 我下载的是windows7纯净版 深度技术里面下载的(http://www.xitongzhijia ...

  10. python☞自动发送邮件

    一.SMTP 协议 SMTP(Simple Mail Transfer Protocol)是简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式 二.smtplib ...