图像风格迁移(Pytorch)
图像风格迁移
最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效,
Content Loss
根据输入图片和输出图片的像素差别可以比较损失
\(l_{content} = \frac{1}{2}\sum (C_c-T_c)^2\)
Style Loss
从中间提取多个特征层来衡量损失。
利用\(Gram\) \(Matrix\)(格拉姆矩阵)可以衡量风格的相关性,对于一个实矩阵\(X\),矩阵\(XX^T\)是\(X\)的行向量的格拉姆矩阵
\(l_{style}=\sum wi(Ts-Ss)^2\)
总的损失函数
\(L_{total(S,C,T)}=\alpha l_{content}(C,T)+\beta L_{style}(S,T)\)
代码
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.optim as optim
from torchvision import transforms, models
vgg = models.vgg19(pretrained=True).features #使用预训练的VGG19,features表示只提取不包括全连接层的部分
for i in vgg.parameters():
i.requires_grad_(False) #不要求训练VGG的参数
定义一个显示图片的函数
def load_img(path, max_size=400,shape=None):
img = Image.open(path).convert('RGB')
if(max(img.size)) > max_size: #规定图像的最大尺寸
size = max_size
else:
size = max(img.size)
if shape is not None:
size = shape
transform = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))
])
'''删除alpha通道(jpg), 转为png,补足另一个维度-batch'''
img = transform(img)[:3,:,:].unsqueeze(0)
return img
载入图像
content = load_img('./images/turtle.jpg')
style = load_img('./images/wave.jpg', shape=content.shape[-2:]) #让两张图尺寸一样
'''转换为plt可以画出来的形式'''
def im_convert(tensor):
img = tensor.clone().detach()
img = img.numpy().squeeze()
img = img.transpose(1,2,0)
img = img * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
img = img.clip(0,1)
return img
使用的图像为(左边为Content Image,右边为Style Image):
定义几个待会要用到的函数
def get_features(img, model, layers=None):
'''获取特征层'''
if layers is None:
layers = {
'0':'conv1_1',
'5':'conv2_1',
'10':'conv3_1',
'19':'conv4_1',
'21':'conv4_2', #content层
'28':'conv5_1'
}
features = {}
x = img
for name, layer in model._modules.items():
x = layer(x)
if name in layers:
features[layers[name]] = x
return features
def gram_matrix(tensor):
'''计算Gram matrix'''
_, d, h, w = tensor.size() #第一个是batch_size
tensor = tensor.view(d, h*w)
gram = torch.mm(tensor, tensor.t())
return gram
content_features = get_features(content, vgg)
style_features = get_features(style, vgg)
style_grams = {layer:gram_matrix(style_features[layer]) for layer in style_features}
target = content.clone().requires_grad_(True)
'''定义不同层的权重'''
style_weights = {
'conv1_1': 1,
'conv2_1': 0.8,
'conv3_1': 0.5,
'conv4_1': 0.3,
'conv5_1': 0.1,
}
'''定义2种损失对应的权重'''
content_weight = 1
style_weight = 1e6
训练过程
show_every = 400
optimizer = optim.Adam([target], lr=0.003)
steps = 2000
for ii in range(steps):
target_features = get_features(target, vgg)
content_loss = torch.mean((target_features['conv4_2'] - content_features['conv4_2'])**2)
style_loss = 0
'''加上每一层的gram_matrix矩阵的损失'''
for layer in style_weights:
target_feature = target_features[layer]
target_gram = gram_matrix(target_feature)
_, d, h, w = target_feature.shape
style_gram = style_grams[layer]
layer_style_loss = style_weights[layer] * torch.mean((target_gram - style_gram)**2)
style_loss += layer_style_loss/(d*h*w) #加到总的style_loss里,除以大小
total_loss = content_weight * content_loss + style_weight * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
if ii % show_every == 0 :
print('Total Loss:',total_loss.item())
plt.imshow(im_convert(target))
plt.show()
将输入的图像和最后得到的混合图作比较:
没有达到最好的效果,还有可以优化的空间√
参考:
- Image Style Transfer Using Convolutional Neural Networks论文
- Udacity——PyTorch Scholarship Challenge
图像风格迁移(Pytorch)的更多相关文章
- keras图像风格迁移
风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致. 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是"内容损失"(content loss) ...
- fast neural style transfer图像风格迁移基于tensorflow实现
引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...
- Distill详述「可微图像参数化」:神经网络可视化和风格迁移利器!
近日,期刊平台 Distill 发布了谷歌研究人员的一篇文章,介绍一个适用于神经网络可视化和风格迁移的强大工具:可微图像参数化.这篇文章从多个方面介绍了该工具. 图像分类神经网络拥有卓越的图像生成能力 ...
- 使用 PyTorch 进行 风格迁移(Neural-Transfer)
1.简介 本教程主要讲解如何实现由 Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的Neural-Style 算法.Neural-Style 或者 ...
- Gram格拉姆矩阵在风格迁移中的应用
Gram定义 n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix) 根据定义可以看到,每个Gram矩阵背后都有一组向量,Gram矩阵就是由这一组向 ...
- 『cs231n』通过代码理解风格迁移
『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...
- Keras实现风格迁移
风格迁移 风格迁移算法经历多次定义和更新,现在应用在许多智能手机APP上. 风格迁移在保留目标图片内容的基础上,将图片风格引用在目标图片上. 风格本质上是指在各种空间尺度上图像中的纹理,颜色和视觉图案 ...
- ng-深度学习-课程笔记-14: 人脸识别和风格迁移(Week4)
1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就 ...
- [DeeplearningAI笔记]卷积神经网络4.6-4.10神经网络风格迁移
4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.6什么是神经网络风格转换neural style transfer 将原图片作为内容图片Cont ...
随机推荐
- 持续交付之软件包管理maven篇
背景 持续交付的我们常见的流程如下,其中有一个环节就是软件包管理 今天我们以maven仓库为示例,如下是Jenkins与CD生态: 持续交付的示例 5 Principles 五个原则 Deliver ...
- Java 设置PDF文档背景色
一般生成的PDF文档默认的文档底色为白色,我们可以通过一定方法来更改文档的背景色,以达到文档美化以及保护双眼的作用. 以下内容提供了Java编程来设置PDF背景色的方法.包括: 设置纯色背景色 设置图 ...
- Ubuntu16.04安装opencv-3.4.2
原文链接: https://m.oldpan.me/archives/ubuntu-install-opencv-from-source 第一步:更新我们的系统 sudo apt-get update ...
- 迭代器模式 Iterator 行为型 设计模式(二十)
迭代器模式(Iterator) 走遍天下,世界那么大,我想去看看 在计算机中,Iterator意为迭代器,迭代有重复的含义,在程序中,更有“遍历”的含义 如果给定一个数组,我们可以通过for循 ...
- VSCode瞎折腾记
搬到小机房后终于能用VSCode啦(没错以前的系统是xp) 但是这东西比Dev难搞多了qwq,简单记一下自己的DIY历程吧(不然全搞炸就凉了) 设置语言为中文 可以直接下载插件 让VSCode支持编译 ...
- iOS:我的学习路径
1.复习C语言(半个月) <C Primer Plus>1-6章 2.学习Objective-C基础语法(一周) 黑马程序员视频 3.直接用Xcode开始APP的实战(半个月) 黑马程序员 ...
- 斐波那契数列(C#)
斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列.费波那西数列.费波拿契数.费氏数列,指的是这样一个数列:1.1.2.3.5.8.13 ...
- python类的继承、封装和多态
摘自https://www.cnblogs.com/evablogs/p/6724477.html 继承 1 2 3 4 5 6 7 8 class Person(object): def _ ...
- UNIX DOMAIN SOCKET效率
关于UNIX DOMAIN SOCKET和普通udp socket的对比 在TX1(4核A57 1.7GHz)的板卡上进行测试,每个包大小设置为1024,全速收发,UDS的速度在90Mbps左右,UD ...
- oracle 行列转换
oracle 行列转换列名如果是数字,用双引号包住 如下: -- 建表 create table workinfo(wid integer primary key,sid integer ,CON ...