图像风格迁移

最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效,

Content Loss

根据输入图片和输出图片的像素差别可以比较损失

\(l_{content} = \frac{1}{2}\sum (C_c-T_c)^2\)

Style Loss

从中间提取多个特征层来衡量损失。

利用\(Gram\) \(Matrix\)(格拉姆矩阵)可以衡量风格的相关性,对于一个实矩阵\(X\),矩阵\(XX^T\)是\(X\)的行向量的格拉姆矩阵

\(l_{style}=\sum wi(Ts-Ss)^2\)

总的损失函数

\(L_{total(S,C,T)}=\alpha l_{content}(C,T)+\beta L_{style}(S,T)\)


代码
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np import torch
import torch.optim as optim
from torchvision import transforms, models vgg = models.vgg19(pretrained=True).features #使用预训练的VGG19,features表示只提取不包括全连接层的部分 for i in vgg.parameters():
i.requires_grad_(False) #不要求训练VGG的参数

定义一个显示图片的函数

def load_img(path, max_size=400,shape=None):
img = Image.open(path).convert('RGB') if(max(img.size)) > max_size: #规定图像的最大尺寸
size = max_size
else:
size = max(img.size) if shape is not None:
size = shape
transform = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))
])
'''删除alpha通道(jpg), 转为png,补足另一个维度-batch'''
img = transform(img)[:3,:,:].unsqueeze(0)
return img

载入图像

content  = load_img('./images/turtle.jpg')
style = load_img('./images/wave.jpg', shape=content.shape[-2:]) #让两张图尺寸一样 '''转换为plt可以画出来的形式'''
def im_convert(tensor):
img = tensor.clone().detach()
img = img.numpy().squeeze()
img = img.transpose(1,2,0)
img = img * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
img = img.clip(0,1)
return img

使用的图像为(左边为Content Image,右边为Style Image):

定义几个待会要用到的函数

def get_features(img, model, layers=None):
'''获取特征层'''
if layers is None:
layers = {
'0':'conv1_1',
'5':'conv2_1',
'10':'conv3_1',
'19':'conv4_1',
'21':'conv4_2', #content层
'28':'conv5_1'
} features = {}
x = img
for name, layer in model._modules.items():
x = layer(x)
if name in layers:
features[layers[name]] = x return features def gram_matrix(tensor):
'''计算Gram matrix'''
_, d, h, w = tensor.size() #第一个是batch_size tensor = tensor.view(d, h*w) gram = torch.mm(tensor, tensor.t()) return gram content_features = get_features(content, vgg)
style_features = get_features(style, vgg) style_grams = {layer:gram_matrix(style_features[layer]) for layer in style_features} target = content.clone().requires_grad_(True) '''定义不同层的权重'''
style_weights = {
'conv1_1': 1,
'conv2_1': 0.8,
'conv3_1': 0.5,
'conv4_1': 0.3,
'conv5_1': 0.1,
}
'''定义2种损失对应的权重'''
content_weight = 1
style_weight = 1e6

训练过程

show_every = 400
optimizer = optim.Adam([target], lr=0.003)
steps = 2000 for ii in range(steps):
target_features = get_features(target, vgg) content_loss = torch.mean((target_features['conv4_2'] - content_features['conv4_2'])**2)
style_loss = 0
'''加上每一层的gram_matrix矩阵的损失'''
for layer in style_weights:
target_feature = target_features[layer]
target_gram = gram_matrix(target_feature)
_, d, h, w = target_feature.shape
style_gram = style_grams[layer]
layer_style_loss = style_weights[layer] * torch.mean((target_gram - style_gram)**2)
style_loss += layer_style_loss/(d*h*w) #加到总的style_loss里,除以大小 total_loss = content_weight * content_loss + style_weight * style_loss optimizer.zero_grad()
total_loss.backward()
optimizer.step() if ii % show_every == 0 :
print('Total Loss:',total_loss.item())
plt.imshow(im_convert(target))
plt.show()

将输入的图像和最后得到的混合图作比较:

没有达到最好的效果,还有可以优化的空间√

参考:
  1. Image Style Transfer Using Convolutional Neural Networks论文
  2. Udacity——PyTorch Scholarship Challenge

图像风格迁移(Pytorch)的更多相关文章

  1. keras图像风格迁移

    风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致. 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是"内容损失"(content loss) ...

  2. fast neural style transfer图像风格迁移基于tensorflow实现

    引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...

  3. Distill详述「可微图像参数化」:神经网络可视化和风格迁移利器!

    近日,期刊平台 Distill 发布了谷歌研究人员的一篇文章,介绍一个适用于神经网络可视化和风格迁移的强大工具:可微图像参数化.这篇文章从多个方面介绍了该工具. 图像分类神经网络拥有卓越的图像生成能力 ...

  4. 使用 PyTorch 进行 风格迁移(Neural-Transfer)

    1.简介 本教程主要讲解如何实现由 Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的Neural-Style 算法.Neural-Style 或者 ...

  5. Gram格拉姆矩阵在风格迁移中的应用

    Gram定义 n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix) 根据定义可以看到,每个Gram矩阵背后都有一组向量,Gram矩阵就是由这一组向 ...

  6. 『cs231n』通过代码理解风格迁移

    『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...

  7. Keras实现风格迁移

    风格迁移 风格迁移算法经历多次定义和更新,现在应用在许多智能手机APP上. 风格迁移在保留目标图片内容的基础上,将图片风格引用在目标图片上. 风格本质上是指在各种空间尺度上图像中的纹理,颜色和视觉图案 ...

  8. ng-深度学习-课程笔记-14: 人脸识别和风格迁移(Week4)

    1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就 ...

  9. [DeeplearningAI笔记]卷积神经网络4.6-4.10神经网络风格迁移

    4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.6什么是神经网络风格转换neural style transfer 将原图片作为内容图片Cont ...

随机推荐

  1. .net core api +swagger(一个简单的入门demo 使用codefirst+mysql)

    前言: 自从.net core问世之后,就一直想了解.但是由于比较懒惰只是断断续续了解一点.近段时间工作不是太忙碌,所以偷闲写下自己学习过程.慢慢了解.net core 等这些基础方面学会之后再用.n ...

  2. 简简单单的Vue3(插件开发,路由系统,状态管理)

    既然选择了远方,便只顾风雨兼程 __ HANS许 系列:零基础搭建前后端分离项目 系列:零基础搭建前后端分离项目 插件 路由(vue-router) 状态管理模式(Vuex) 那在上篇文章,我们讲了, ...

  3. 【spring实战第五版遇到的坑】3.2中配置关系映射时,表名和3.1中不一样

    3.2章中按照书中的步骤写好相应类的映射关系,发现启动时,之前在3.1章中建的表全部被删重新建立了,并且Ingredient表的数据没了,由于使用了JPA,默认使用的是hibernate,在启动时会删 ...

  4. 小游戏大智慧,10 个让人眼前一亮的 JavaScript 游戏

    摘要: JS还可以这么玩~ Fundebug经授权转载,版权归原作者所有. 这是一篇有趣的文章,我们精选了 JS13K 游戏编程挑战的优秀作品,与大家分享.JS13K 是专为 JavaScript 开 ...

  5. SD 笔记01

    sap组织结构:代表一个企业的组织视图的结构.根据业务处理,可以设置自己工时的结构.形成一个支持所有业务活动的框架. 集团公司代码销售区域 :销售组织.销售渠道.产品组:工厂库存地点装运地点 集团:c ...

  6. Jenkins 配置GitLab插件和Git插件

    本文演示如何在安装完Jenkins之后,配置GitLab插件和Git插件. 1 安装插件 浏览器登录Jenkins Web UI,点击系统管理,再点击管理插件,切换到可选插件,分别搜索GitLab P ...

  7. 城市经纬度 json

    [ { "name": "北京市", "log": "116.46", "lat": "3 ...

  8. ubuntu18.04 ssh 远程系统拒绝连接 解决方法

    错误提示是这个: The remote system refused the connection. 原因是 Ubuntu 没安装  一个软件, 废话不多说 ,上解决方法: 执行该条命令,安装 ,安装 ...

  9. ASP.NETMVC 分页

    <div class="text-center">    <span style="display:inline-block;  position:re ...

  10. SQL实验一

    一.实验目的: 了解数据库的结构特点.领会数据库中三种类型的文件特点 学会创建和管理数据库的方法 了解SQL SERVER的基本数据类型 了解表结构的特点,学会创建和管理表的方法 学会使用T-SQL语 ...