PC(Remote Procedure Call)远程过程调用,主要解决远程通信间的问题,不需要了解底层网络的通信机制。

RPC框架

知名度较高的有Thrift(FB的)、dubbo(阿里的)。

RPC的一般需要经历4个步骤:

1、建立通信

首先要解决通讯的问题:即A机器想要调用B机器,首先得建立起通信连接,主要是通过在客户端和服务器之间建立TCP连接。

2、服务寻址

要解决寻址的问题,A服务器上如何连接到B服务器(如主机或IP地址)以及特定的端口,方法的名称是什么。

3、网络传输

1)序列化

当A服务器上的应用发起一个RPC调用时,调用方法和参数数据都需要先进行序列化。

2)反序列化

当B服务器接收到A服务器的请求之后,又需要对接收到的参数等信息进行反序列化操作。

4、服务调用

B服务器进行本地调用(通过代理Proxy)之后得到了返回值,此时还需要再把返回值发送回A服务器,同样也需要经过序列化操作,然后再经过网络传输将二进制数据发送回A服务器。

通常,一次完整的PRC调用需要经历如上4个步骤。


MQ(消息队列)

消息队列(MQ)是一种能实现生产者到消费者单向通信的通信模型,一般来说是指实现这个模型的中间件。

典型的MQ中间件:

RabbitMQ、ActiveMQ、Kafka等

典型的特点:

1、解耦

2、可靠投递

3、广播

4、最终一致性

5、流量削峰

6、消息投递保证

7、异步通信(支持同步)

8、提高系统吞吐、健壮性

典型的使用场景:秒杀业务中利用MQ来实现流量削峰,以及应用解耦使用。


RPC和MQ的区别和关联

1.在架构上,RPC和MQ的差异点是,Message有一个中间结点Message Queue,可以把消息存储。

2.同步调用:对于要立即等待返回处理结果的场景,RPC是首选。

3.MQ 的使用,一方面是基于性能的考虑,比如服务端不能快速的响应客户端(或客户端也不要求实时响应),需要在队列里缓存。

另外一方面,它更侧重数据的传输,因此方式更加多样化,除了点对点外,还有订阅发布等功能。

4.而且随着业务增长,有的处理端处理量会成为瓶颈,会进行同步调用改造为异步调用,这个时候可以考虑使用MQ。

那么,这些详细的MQ消息队列的选型我们该如何选择比较呢?


主流的消息队列MQ比较,详解MQ的4类应用场景

消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。

当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发的Notify、MetaQ、RocketMQ等。

现在主要探讨主流的消息队列MQ比较,特征,以及典型使用场景。


目前主流的MQ产品

1.ZeroMQ

号称最快的消息队列系统,尤其针对大吞吐量的需求场景。

扩展性好,开发比较灵活,采用C语言实现,实际上只是一个socket库的重新封装,如果做为消息队列使用,需要开发大量的代码。ZeroMQ仅提供非持久性的队列,也就是说如果down机,数据将会丢失。其中,Twitter的Storm中使用ZeroMQ作为数据流的传输。

2.RabbitMQ

结合erlang语言本身的并发优势,支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。

性能较好,但是不利于做二次开发和维护。

3.ActiveMQ

历史悠久的开源项目,是Apache下的一个子项目。已经在很多产品中得到应用,实现了JMS1.1规范,可以和spring-jms轻松融合,实现了多种协议,不够轻巧(源代码比RocketMQ多),支持持久化到数据库,对队列数较多的情况支持不好。

4.Redis

做为一个基于内存的K-V数据库,其提供了消息订阅的服务,可以当作MQ来使用,目前应用案例较少,且不方便扩展。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。

测试数据分为 128Bytes、512Bytes、1K和10K四个不同大小的数据。

实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如 果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于 Redis。

5.Kafka/Jafka

Kafka是Apache下的一个子项目,是一个高性能跨语言分布式发布/订阅消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。

具有以下特性:

  • 快速持久化,可以在O(1)的系统开销下进行消息持久化;

  • 高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率;完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现负载均衡;

  • 支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。

  • Kafka通过Hadoop的并行加载机制统一了在线和离线的消息处理。Apache Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统。


时需要消息队列

当你需要使用消息队列时,首先需要考虑它的必要性。

可以使用mq的场景有很多,最常用的几种:

  • 做业务解耦

  • 最终一致性

  • 广播

  • 错峰流控等

反之,如果需要强一致性,关注业务逻辑的处理结果,则RPC显得更为合适。


消息队列使用场景

1.解耦

解耦是消息队列要解决的最本质问题。所谓解耦,简单点讲就是一个事务,只关心核心的流程。而需要依赖其他系统但不那么重要的事情,有通知即可,无需等待结果。换句话说,基于消息的模型,关心的是“通知”,而非“处理”。

举一个例子,关于订单系统,订单最终支付成功之后可能需要给用户发送短信积分什么的,但其实这已经不是我们系统的核心流程了。

如果外部系统速度偏慢(比如短信网关速度不好),那么主流程的时间会加长很多,用户肯定不希望点击支付过好几分钟才看到结果。那么我们只需要通知短信系统“我们支付成功了”,不一定非要等待它立即处理完成。

2.最终一致性

最终一致性指的是两个系统的状态保持一致,要么都成功,要么都失败。

当然有个时间限制,理论上越快越好,但实际上在各种异常的情况下,可能会有一定延迟达到最终一致状态,但最后两个系统的状态是一样的。

业界有一些为“最终一致性”而生的消息队列,如:

  • Notify(阿里)

  • QMQ(去哪儿)等

其设计初衷,就是为了交易系统中的高可靠通知。

以一个银行的转账过程来理解最终一致性,转账的需求很简单,如果A系统扣钱成功,则B系统加钱一定成功。反之则一起回滚,像什么都没发生一样。

然而,这个过程中存在很多可能的意外:

  • A扣钱成功,调用B加钱接口失败。

  • A扣钱成功,调用B加钱接口虽然成功,但获取最终结果时网络异常引起超时。

  • A扣钱成功,B加钱失败,A想回滚扣的钱,但A机器down机。

可见,想把这件看似简单的事真正做成,真的不那么容易。

所有跨VM的一致性问题,从技术的角度讲通用的解决方案是:

  • 强一致性,分布式事务,但落地太难且成本太高,后文会具体提到。

  • 最终一致性,主要是用“记录”和“补偿”的方式。在做所有的不确定的事情之前,先把事情记录下来,然后去做不确定的事情,结果可能是:成功、失败或是不确定,“不确定”(例如超时等)可以等价为失败。成功就可以把记录的东西清理掉了,对于失败和不确定,可以依靠定时任务等方式把所有失败的事情重新搞一遍,直到成功为止。

  • 回到刚才的例子,系统在A扣钱成功的情况下,把要给B“通知”这件事记录在库里(为了保证最高的可靠性可以把通知B系统加钱和扣钱成功这两件事维护在一个本地事务里),通知成功则删除这条记录,通知失败或不确定则依靠定时任务补偿性地通知我们,直到我们把状态更新成正确的为止。

  • 整个这个模型依然可以基于RPC来做,但可以抽象成一个统一的模型,基于消息队列来做一个“企业总线”。

  • 具体来说,本地事务维护业务变化和通知消息,一起落地(失败则一起回滚),然后RPC到达broker,在broker成功落地后,RPC返回成功,本地消息可以删除。否则本地消息一直靠定时任务轮询不断重发,这样就保证了消息可靠落地broker。

  • broker往consumer发送消息的过程类似,一直发送消息,直到consumer发送消费成功确认。

  • 我们先不理会重复消息的问题,通过两次消息落地加补偿,下游是一定可以收到消息的。然后依赖状态机版本号等方式做判重,更新自己的业务,就实现了最终一致性。

最终一致性不是消息队列的必备特性,但确实可以依靠消息队列来做最终一致性的事情。

另外,所有不保证100%不丢消息的消息队列,理论上无法实现最终一致性。好吧,应该说理论上的100%,排除系统严重故障和bug。

像Kafka一类的设计,在设计层面上就有丢消息的可能(比如定时刷盘,如果掉电就会丢消息)。哪怕只丢千分之一的消息,业务也必须用其他的手段来保证结果正确。

2.广播

消息队列的基本功能之一是进行广播。

如果没有消息队列,每当一个新的业务方接入,我们都要联调一次新接口。有了消息队列,我们只需要关心消息是否送达了队列,至于谁希望订阅,是下游的事情,无疑极大地减少了开发和联调的工作量。

比如本文开始提到的产品中心发布产品变更的消息,以及景点库很多去重更新的消息,可能“关心”方有很多个,但产品中心和景点库只需要发布变更消息即可,谁关心谁接入。

3.错峰与流控

试想上下游对于事情的处理能力是不同的。

比如,Web前端每秒承受上千万的请求,并不是什么神奇的事情,只需要加多一点机器,再搭建一些LVS负载均衡设备和Nginx等即可。

但数据库的处理能力却十分有限,即使使用SSD加分库分表,单机的处理能力仍然在万级。由于成本的考虑,我们不能奢求数据库的机器数量追上前端。

这种问题同样存在于系统和系统之间,如短信系统可能由于短板效应,速度卡在网关上(每秒几百次请求),跟前端的并发量不是一个数量级。

但用户晚上个半分钟左右收到短信,一般是不会有太大问题的。如果没有消息队列,两个系统之间通过协商、滑动窗口等复杂的方案也不是说不能实现。

但系统复杂性指数级增长,势必在上游或者下游做存储,并且要处理定时、拥塞等一系列问题。而且每当有处理能力有差距的时候,都需要单独开发一套逻辑来维护这套逻辑。所以,利用中间系统转储两个系统的通信内容,并在下游系统有能力处理这些消息的时候,再处理这些消息,是一套相对较通用的方式。


消息队列使用总结

1.消息队列不是万能的,对于需要强事务保证而且延迟敏感的,RPC是优于消息队列的。

2.对于一些无关痛痒,或者对于别人非常重要但是对于自己不是那么关心的事情,可以利用消息队列去做。

3.支持最终一致性的消息队列,能够用来处理延迟不那么敏感的“分布式事务”场景,而且相对于笨重的分布式事务,可能是更优的处理方式。

4.当上下游系统处理能力存在差距的时候,利用消息队列做一个通用的“漏斗”,在下游有能力处理的时候,再进行分发。

5.如果下游有很多系统关心你的系统发出的通知的时候,果断地使用消息队列吧。

详解RPC远程调用和消息队列MQ的区别的更多相关文章

  1. RocketMQ源码详解 | Consumer篇 · 其一:消息的 Pull 和 Push

    概述 当消息被存储后,消费者就会将其消费. 这句话简要的概述了一条消息的最总去向,也引出了本文将讨论的问题: 消息什么时候才对被消费者可见? 是在 page cache 中吗?还是在落盘后?还是像 K ...

  2. 从0到1:全面理解RPC远程调用

    上一篇关于 WSGI 的硬核长文,不知道有多少同学,能够从头看到尾的,不管你们有没有看得很过瘾,反正我是写得很爽,总有一种将一样知识吃透了的错觉. 今天我又给自己挖坑了,打算将 rpc 远程调用的知识 ...

  3. Openstack Nova 源码分析 — RPC 远程调用过程

    目录 目录 Nova Project Services Project 的程序入口 setuppy Nova中RPC远程过程调用 nova-compute RPC API的实现 novacompute ...

  4. 測试JSON RPC远程调用(JSONclient)

    #include <string> #include <iostream> #include <curl/curl.h> /* 标题:JSonclient Auth ...

  5. 使用Socket&反射&Java流操作进行方法的远程调用(模拟RPC远程调用)

    写在前面 阅读本文首先得具备基本的Socket.反射.Java流操作的基本API使用知识:否则本文你可能看不懂... 服务端的端口监听 进行远程调用,那就必须得有客户端和服务端.服务端负责提供服务,客 ...

  6. 为什么会需要消息队列(MQ)?

    为什么会需要消息队列(MQ)? #################################################################################### ...

  7. 消息队列一:为什么需要消息队列(MQ)?

    为什么会需要消息队列(MQ)? #################################################################################### ...

  8. 消息队列mq的原理及实现方法

    消息队列技术是分布式应用间交换信息的一种技术.消息队列可驻留在内存或磁盘上,队列存储消息直到它们被应用程序读走.通过消息队列,应用程序可独立地执行--它们不需要知道彼此的位置.或在继续执行前不需要等待 ...

  9. 消息队列MQ核心原理全面总结(11大必会原理)

    消息队列已经逐渐成为分布式应用场景.内部通信.以及秒杀等高并发业务场景的核心手段,它具有低耦合.可靠投递.广播.流量控制.最终一致性 等一系列功能. 无论是 RabbitMQ.RocketMQ.Act ...

随机推荐

  1. Shell 脚本中调用另一个 Shell 脚本的三种方式

    主要以下有几种方式: Command Explanation fork 新开一个子 Shell 执行,子 Shell 可以从父 Shell 继承环境变量,但是子 Shell 中的环境变量不会带回给父 ...

  2. pyqt5将图片插入面板

    from PyQt5.QtWidgets import * from PyQt5 import QtCore,QtWidgets from PyQt5.QtGui import * import sy ...

  3. 浅析 .Net Core中Json配置的自动更新

    Pre 很早在看 Jesse 的Asp.net Core快速入门的课程的时候就了解到了在Asp .net core中,如果添加的Json配置被更改了,是支持自动重载配置的,作为一名有着严重" ...

  4. 鸟哥的Linux私房菜笔记第四章

    前言 对着<鸟哥的Linux私房菜-基础版>做了简化笔记.不想让自己知其然而不知其所然.所以写个博客让自己好好巩固一下,当然不可能把书中的内容全部写下来.在这里就简化一点把命令写下来. 让 ...

  5. Haskell学习-monad

    原文地址:Haskell学习-monad 什么是Monad Haskell是一门纯函数式的语言,纯函数的优点是安全可靠.函数输出完全取决于输入,不存在任何隐式依赖,它的存在如同数学公式般完美无缺.可是 ...

  6. python接口自动化(十九)--Json 数据处理---实战(详解)

    简介 上一篇说了关于json数据处理,是为了断言方便,这篇就带各位小伙伴实战一下.首先捋一下思路,然后根据思路一步一步的去实现和实战,不要一开始就盲目的动手和无头苍蝇一样到处乱撞,撞得头破血流后而放弃 ...

  7. Java8新特性之三:Stream API

    Java8的两个重大改变,一个是Lambda表达式,另一个就是本节要讲的Stream API表达式.Stream 是Java8中处理集合的关键抽象概念,它可以对集合进行非常复杂的查找.过滤.筛选等操作 ...

  8. Redis - NoSQL数据库技术(一)

    NoSQL入门概述(一) 作者 : Stanley 罗昊 [转载请注明出处和署名,谢谢!] 什么是NoSQL NoSQL(NoSQL - Not Only SQL),意“不仅仅是SQL”: 泛指非关系 ...

  9. ADO.NET 基础学习笔记1

    1. ODBC.OLEDB.ADO.ADO.NET之间的关系 ODBC: 开放数据库互连(ODBC)是MICROSOFT提出的数据库访问接口标准.ODBC(Open DatabaseConnectiv ...

  10. Java设置PDF有序、无序列表

    文档中的设置有序或无序列表是一种反应内容上下级关系或者内容相同属性的方式,与单纯的文字叙述相比,它能有效增强文档内容的条理性,突出重点.因此,本文将分享通过Java编程在PDF文档中设置有序或无序列表 ...