Given a graph (V,E) where V is a set of nodes and E is a set of arcs in VxV, and an ordering on the elements in V, then the bandwidth of a node v is defined as the maximum distance in the ordering between v and any node to which it is connected in the graph. The bandwidth of the ordering is then defined as the maximum of the individual bandwidths. For example, consider the following graph:

This can be ordered in many ways, two of which are illustrated below:

For these orderings, the bandwidths of the nodes (in order) are 6, 6, 1, 4, 1, 1, 6, 6 giving an ordering bandwidth of 6, and 5, 3, 1, 4, 3, 5, 1, 4 giving an ordering bandwidth of 5.

Write a program that will find the ordering of a graph that minimises the bandwidth.

Input

Input will consist of a series of graphs. Each graph will appear on a line by itself. The entire file will be terminated by a line consisting of a single #. For each graph, the input will consist of a series of records separated by `;'. Each record will consist of a node name (a single upper case character in the the range `A' to `Z'), followed by a `:' and at least one of its neighbours. The graph will contain no more than 8 nodes.

Output

Output will consist of one line for each graph, listing the ordering of the nodes followed by an arrow (->) and the bandwidth for that ordering. All items must be separated from their neighbours by exactly one space. If more than one ordering produces the same bandwidth, then choose the smallest in lexicographic ordering, that is the one that would appear first in an alphabetic listing.

Sample input

A:FB;B:GC;D:GC;F:AGH;E:HD
#

Sample output

A B C F G D H E -> 3

求出排列好后,相连的两个值之间存在的最大值,然后找出最大值最小的那一组

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int maps[30][30];
int hav[30];
int p[10],a[10];
int ans[10],n,pmax,sum;
int work() //如果相连,求它们之间距离的最大值
{
int tmax = 0;
for(int i=1; i<n; i++)
{
for(int j=i+1; j<n; j++)
{
if(maps[a[i]][a[j]])
{
if(j - i>tmax)
tmax=j-i;
}
}
}
return tmax;
}
void dfs(int cur)
{
int flag;
if(cur==n)
{
sum=work();
if(pmax>sum) //找出最大距离最小的那一组
{
pmax=sum;
memcpy(ans,a,sizeof(a));
}
return ;
}
else
{
for(int i=1; i<n; i++)
{
flag=1;
a[cur]=p[i];
for(int j=1; j<cur; j++)
{
if(a[j]==a[cur])
{
flag=0;
break;
}
}
if(flag)
dfs(cur+1);
}
}
}
int main()
{
char str[100];
char c;
int len,i,pre,now;
while(gets(str)&&strcmp(str,"#"))
{
n=1,pmax = 0x3f3f3f3f;
len=strlen(str);
memset(maps,0,sizeof(maps));
memset(hav,0,sizeof(hav));
memset(p,0,sizeof(p));
for(i=0; i<len; i++)
{
c=str[i];
if(str[i+1]==':')
{
pre=c-'A'+1;
hav[pre]++;
}
else if(c>='A'&&c<='Z')
{
now=c-'A'+1;
hav[now]++;
maps[now][pre]=maps[pre][now]=1;
}
}
for(i=0; i<27; i++)
{
if(hav[i])
p[n++]=i;
}
dfs(1);
for(i=1; i<n; i++)
printf("%c ",ans[i]+'A'-1);
printf("-> %d",pmax);
printf("\n");
}
return 0;
}

  

UVA140 ——bandwidth(搜索)的更多相关文章

  1. uva140 - Bandwidth

    Bandwidth Given a graph (V,E) where V is a set of nodes and E is a set of arcs in VxV, and an orderi ...

  2. UVa140 Bandwidth 小剪枝+双射小技巧+枚举全排列+字符串的小处理

    给出一个图,找出其中的最小带宽的排列.具体要求见传送门:UVa140 这题有些小技巧可以简化代码的编写. 本题的实现参考了刘汝佳老师的源码,的确给了我许多启发,感谢刘老师. 思路: 建立双射关系:从字 ...

  3. Uva140 Bandwidth 全排列+生成测试法+剪枝

    参考过仰望高端玩家的小清新的代码... 思路:1.按字典序对输入的字符串抽取字符,id[字母]=编号,id[编号]=字母,形成双射       2.邻接表用两个vector存储,存储相邻关系     ...

  4. UVa140 Bandwidth 【最优性剪枝】

    题目链接:https://vjudge.net/contest/210334#problem/F  转载于:https://www.cnblogs.com/luruiyuan/p/5847706.ht ...

  5. 递归回溯 UVa140 Bandwidth宽带

    本题题意:寻找一个排列,在此排序中,带宽的长度最小(带宽是指:任意一点v与其距离最远的且与v有边相连的顶点与v的距离的最大值),若有多个,按照字典序输出最小的哪一个. 解题思路: 方法一:由于题目说结 ...

  6. UVA-140 Bandwidth (回溯+剪枝)

    题目大意:求一个使带宽最小的排列和最小带宽.带宽是指一个字母到其相邻字母的距离最大值. 题目分析:在递归生成全排列的过程中剪枝,剪枝方案还是两个.一.当前解不如最优解优时,减去:二.预测的理想解不必最 ...

  7. 7-6 Bandwidth UVA140

    没有清空向量导致debug了好久 这题难以下手  不知道怎么dfs 原来是用排序函数. letter[n]=i; id[i]=n++; 用来储存与设置标记十分巧妙 for(;;) { while(s[ ...

  8. uva 140 bandwidth (好题) ——yhx

     Bandwidth  Given a graph (V,E) where V is a set of nodes and E is a set of arcs in VxV, and an orde ...

  9. UVa OJ 140 - Bandwidth (带宽)

    Time limit: 3.000 seconds限时3.000秒 Problem问题 Given a graph (V,E) where V is a set of nodes and E is a ...

随机推荐

  1. 201621123031 《Java程序设计》第6周学习总结

    作业06-接口.内部类 1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多 ...

  2. python 一致性哈希 分布式

    hash_ring # -*- coding: utf-8 -*- """ hash_ring ~~~~~~~~~~~~~~ Implements consistent ...

  3. java实现同步的两种方式

    同步是多线程中的重要概念.同步的使用可以保证在多线程运行的环境中,程序不会产生设计之外的错误结果.同步的实现方式有两种,同步方法和同步块,这两种方式都要用到synchronized关键字. 给一个方法 ...

  4. pandas 使用

    ss = [['xx','m',22],['cc','w',33],['jj','w',44],['qq','m',11]] import pandas as pd df = pd.DataFrame ...

  5. Hibernate之HQL

    SQL语句的DML操作不外乎:增,删,改,查 增加 :  save(),persist() 删除 :   delete() 改动 :   update() 查询  :  get() ,load() 其 ...

  6. SQL之Left Join 关联条件的探讨

    在测试工作中,有时需要测试数据库数据经过sql计算后的结果是否满足某一功能查询得到的返回值. 针对某些需要功能需要联查多张表,此时 关联 的作用就异常重要了,而针对多表关联,其中 关联条件的重要性不言 ...

  7. JS中apply和call的应用和区别

    因为object没有某个方法,但是别的对象有,可以借助apply或call像别的对象借方法来操作. 猫吃鱼,狗吃肉,奥特曼打小怪兽. 有天狗想吃鱼了 猫.吃鱼.call(狗,鱼) 狗就吃到鱼了 猫成精 ...

  8. servlet2.3/2.5/3.0/3.1的xml名称空间备忘

    The web.xml is a configuration file to describe how a web application should be deployed. Here’re 5  ...

  9. Codeforces Round #426 (Div. 2)

    http://codeforces.com/contest/834 A. The Useless Toy 题意: <,>,^,v这4个箭头符号,每一个都可以通过其他及其本身逆时针或者顺时针 ...

  10. Spring(三):Spring整合Hibernate

    背景: 本文主要介绍使用spring-framework-4.3.8.RELEASE与hibernate-release-5.2.9.Final项目整合搭建的过程. 开发环境简介: 1).jdk 1. ...